Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387267497> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4387267497 abstract "Abstract Spatial polygon data represents the area or region of specific events, such as disease cases, crime, medical facilities, earthquakes, and fires. In spatial data analysis, locating the hotspot is essential. However, it is challenging to identify a spatially significant hotspot. This paper proposes a novel method for finding statistically significant hotspots based on the rough graph. First, the Global Moan index is used to determine the presence of spatial dependence in the data set. Then, the HSDRG algorithm is implemented to find the hotspot of the polygon vector data. Two spatial neighbour search techniques, BFS and DFS, are employed to find the spatial neighbour. The algorithm is evaluated using socio-economic data from Uttar Pradesh, India. Four variables were chosen to find the hotspot: female literacy, male literacy, female workers, and male workers. A percentage value is calculated for each variable to find the hotspot. The analysis reveals that the generated hotspots are denser, the PAI value is high, and the running time is less than the other methods found in the literature. The running time of the HSDRH algorithm using DFS as the search technique is 69.48%, 72.91%, and 73.08% less compared to the methods Moran’s I, Getis Ord Gi, and Getis Ord Gi*, respectively. Therefore, the HDSRG algorithm using a rough graph is considered the optimal method for hotspot detection. This type of analysis is vital to know whether the area has good literacy concerning males and females and to know the area has hotspot workers." @default.
- W4387267497 created "2023-10-03" @default.
- W4387267497 creator A5040380385 @default.
- W4387267497 creator A5054980854 @default.
- W4387267497 date "2023-10-02" @default.
- W4387267497 modified "2023-10-03" @default.
- W4387267497 title "Gender-Specific Hotspot Detection of Literate and Workers in Uttar Pradesh, India using a Rough Graph-based Approach" @default.
- W4387267497 cites W12154863 @default.
- W4387267497 cites W1967137980 @default.
- W4387267497 cites W197303729 @default.
- W4387267497 cites W1994231679 @default.
- W4387267497 cites W2002151188 @default.
- W4387267497 cites W2034998024 @default.
- W4387267497 cites W2118898434 @default.
- W4387267497 cites W2131077233 @default.
- W4387267497 cites W2147330627 @default.
- W4387267497 cites W2150495678 @default.
- W4387267497 cites W2162391263 @default.
- W4387267497 cites W2198477191 @default.
- W4387267497 cites W2244535715 @default.
- W4387267497 cites W2278483113 @default.
- W4387267497 cites W2480429758 @default.
- W4387267497 cites W2970149402 @default.
- W4387267497 cites W2977272412 @default.
- W4387267497 cites W2994136193 @default.
- W4387267497 cites W3025509747 @default.
- W4387267497 cites W3034990810 @default.
- W4387267497 cites W3037763373 @default.
- W4387267497 cites W3134115535 @default.
- W4387267497 cites W3136633361 @default.
- W4387267497 cites W3137836626 @default.
- W4387267497 cites W3139167884 @default.
- W4387267497 cites W3167267579 @default.
- W4387267497 cites W3184566116 @default.
- W4387267497 cites W3202169618 @default.
- W4387267497 cites W3212201412 @default.
- W4387267497 cites W4200438419 @default.
- W4387267497 cites W4205192263 @default.
- W4387267497 cites W4206190750 @default.
- W4387267497 cites W4220866934 @default.
- W4387267497 cites W4236813160 @default.
- W4387267497 cites W4254615348 @default.
- W4387267497 doi "https://doi.org/10.21203/rs.3.rs-2951217/v1" @default.
- W4387267497 hasPublicationYear "2023" @default.
- W4387267497 type Work @default.
- W4387267497 citedByCount "0" @default.
- W4387267497 crossrefType "posted-content" @default.
- W4387267497 hasAuthorship W4387267497A5040380385 @default.
- W4387267497 hasAuthorship W4387267497A5054980854 @default.
- W4387267497 hasBestOaLocation W43872674971 @default.
- W4387267497 hasConcept C126042441 @default.
- W4387267497 hasConcept C127313418 @default.
- W4387267497 hasConcept C146481406 @default.
- W4387267497 hasConcept C162324750 @default.
- W4387267497 hasConcept C190694206 @default.
- W4387267497 hasConcept C205649164 @default.
- W4387267497 hasConcept C2994273942 @default.
- W4387267497 hasConcept C41008148 @default.
- W4387267497 hasConcept C50522688 @default.
- W4387267497 hasConcept C547764534 @default.
- W4387267497 hasConcept C76155785 @default.
- W4387267497 hasConcept C8058405 @default.
- W4387267497 hasConceptScore W4387267497C126042441 @default.
- W4387267497 hasConceptScore W4387267497C127313418 @default.
- W4387267497 hasConceptScore W4387267497C146481406 @default.
- W4387267497 hasConceptScore W4387267497C162324750 @default.
- W4387267497 hasConceptScore W4387267497C190694206 @default.
- W4387267497 hasConceptScore W4387267497C205649164 @default.
- W4387267497 hasConceptScore W4387267497C2994273942 @default.
- W4387267497 hasConceptScore W4387267497C41008148 @default.
- W4387267497 hasConceptScore W4387267497C50522688 @default.
- W4387267497 hasConceptScore W4387267497C547764534 @default.
- W4387267497 hasConceptScore W4387267497C76155785 @default.
- W4387267497 hasConceptScore W4387267497C8058405 @default.
- W4387267497 hasLocation W43872674971 @default.
- W4387267497 hasOpenAccess W4387267497 @default.
- W4387267497 hasPrimaryLocation W43872674971 @default.
- W4387267497 hasRelatedWork W1995655877 @default.
- W4387267497 hasRelatedWork W2185529290 @default.
- W4387267497 hasRelatedWork W2257808826 @default.
- W4387267497 hasRelatedWork W2619126747 @default.
- W4387267497 hasRelatedWork W2748952813 @default.
- W4387267497 hasRelatedWork W2887757034 @default.
- W4387267497 hasRelatedWork W2899084033 @default.
- W4387267497 hasRelatedWork W2199172253 @default.
- W4387267497 hasRelatedWork W2529563588 @default.
- W4387267497 hasRelatedWork W2788895664 @default.
- W4387267497 isParatext "false" @default.
- W4387267497 isRetracted "false" @default.
- W4387267497 workType "article" @default.