Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387272222> ?p ?o ?g. }
- W4387272222 endingPage "108447" @default.
- W4387272222 startingPage "108433" @default.
- W4387272222 abstract "Sentiment analysis is a sub-domain in opinion mining that extracts sentiments from the users’ opinions from text messages. Opinions from E-commerce websites, blogs, online social media, etc., and these opinions are in the form of text, suggestions, and comments. This paper describes the new sentiment analysis model to predict sentiments effectively that can be used to improve product quality and sales. The proposed approach is an integrated model combining several techniques, such as the pre-trained model BERT-large-cased (BLC) for training the dataset. BLC model contains 24-layer, 1024-hidden, 16-heads, 340M parameters. Optimization algorithms can fine-tune pre-trained models, such as BERT, for sentiment analysis tasks. Fine-tuning involves training the pre-trained model on a specific sentiment analysis task to improve performance. Stochastic Gradient Descent (SGD) is the optimized algorithm that helps to analyze the sentiments effectively from the given datasets. The next step is the combination of pre-processing techniques such as Tokenization, Stop Word Removal, etc. The next step focused on Bag-of-Words (BoW) and word embedding techniques like Word2Vec used to extract the features from the datasets. The deep sentiment analysis (DSA) based classification is designed to classify the sentiments based on aspect and priority model to achieve better results. The proposed model combines Aspect and Priority-based Sentiment analysis with a Decision-based Recurrent Neural Network (D-RNN). The experiments are conducted using Twitter, Restaurant, and Laptop datasets available publicly on Kaggle—the proposed model’s performance is analyzed using a confusion matrix. The proposed approach addresses various challenges in analyzing the sentiment analysis. Python programming language with several libraries such as Keras, Pandas, and others extracts the sentiments from given datasets. The comparison between the existing and proposed models shows the effectiveness of the sentiment outputs." @default.
- W4387272222 created "2023-10-03" @default.
- W4387272222 creator A5023274424 @default.
- W4387272222 creator A5083074675 @default.
- W4387272222 date "2023-01-01" @default.
- W4387272222 modified "2023-10-11" @default.
- W4387272222 title "Deep-Sentiment: An Effective Deep Sentiment Analysis using a Decision-based Recurrent Neural Network (D-RNN)" @default.
- W4387272222 cites W1990482343 @default.
- W4387272222 cites W2143376306 @default.
- W4387272222 cites W2306941105 @default.
- W4387272222 cites W2496290860 @default.
- W4387272222 cites W2536583325 @default.
- W4387272222 cites W2553535420 @default.
- W4387272222 cites W2590061102 @default.
- W4387272222 cites W2625682749 @default.
- W4387272222 cites W2752194699 @default.
- W4387272222 cites W2787566989 @default.
- W4387272222 cites W2789655955 @default.
- W4387272222 cites W2901256888 @default.
- W4387272222 cites W2913898221 @default.
- W4387272222 cites W2916755661 @default.
- W4387272222 cites W2926558230 @default.
- W4387272222 cites W2941947904 @default.
- W4387272222 cites W2944636446 @default.
- W4387272222 cites W2955109214 @default.
- W4387272222 cites W2995987488 @default.
- W4387272222 cites W3003618396 @default.
- W4387272222 cites W3005378242 @default.
- W4387272222 cites W3013466528 @default.
- W4387272222 cites W3014413883 @default.
- W4387272222 cites W3032045136 @default.
- W4387272222 cites W3035615221 @default.
- W4387272222 cites W3039918539 @default.
- W4387272222 cites W3044780320 @default.
- W4387272222 cites W3048084255 @default.
- W4387272222 cites W3048826036 @default.
- W4387272222 cites W3085975571 @default.
- W4387272222 cites W3086548118 @default.
- W4387272222 cites W3090154305 @default.
- W4387272222 cites W3093758676 @default.
- W4387272222 cites W3096229121 @default.
- W4387272222 cites W3098363382 @default.
- W4387272222 cites W3098530720 @default.
- W4387272222 cites W3120939265 @default.
- W4387272222 cites W3150382221 @default.
- W4387272222 cites W3174994995 @default.
- W4387272222 cites W3176707157 @default.
- W4387272222 cites W3197373672 @default.
- W4387272222 cites W3205867349 @default.
- W4387272222 cites W3212678924 @default.
- W4387272222 cites W4317568744 @default.
- W4387272222 cites W4318952381 @default.
- W4387272222 cites W4360996728 @default.
- W4387272222 cites W4378717986 @default.
- W4387272222 cites W4382282323 @default.
- W4387272222 doi "https://doi.org/10.1109/access.2023.3320738" @default.
- W4387272222 hasPublicationYear "2023" @default.
- W4387272222 type Work @default.
- W4387272222 citedByCount "0" @default.
- W4387272222 crossrefType "journal-article" @default.
- W4387272222 hasAuthorship W4387272222A5023274424 @default.
- W4387272222 hasAuthorship W4387272222A5083074675 @default.
- W4387272222 hasBestOaLocation W43872722221 @default.
- W4387272222 hasConcept C108583219 @default.
- W4387272222 hasConcept C119857082 @default.
- W4387272222 hasConcept C147168706 @default.
- W4387272222 hasConcept C154945302 @default.
- W4387272222 hasConcept C176982825 @default.
- W4387272222 hasConcept C204321447 @default.
- W4387272222 hasConcept C206688291 @default.
- W4387272222 hasConcept C2776461190 @default.
- W4387272222 hasConcept C2777462759 @default.
- W4387272222 hasConcept C41008148 @default.
- W4387272222 hasConcept C41608201 @default.
- W4387272222 hasConcept C50644808 @default.
- W4387272222 hasConcept C66402592 @default.
- W4387272222 hasConceptScore W4387272222C108583219 @default.
- W4387272222 hasConceptScore W4387272222C119857082 @default.
- W4387272222 hasConceptScore W4387272222C147168706 @default.
- W4387272222 hasConceptScore W4387272222C154945302 @default.
- W4387272222 hasConceptScore W4387272222C176982825 @default.
- W4387272222 hasConceptScore W4387272222C204321447 @default.
- W4387272222 hasConceptScore W4387272222C206688291 @default.
- W4387272222 hasConceptScore W4387272222C2776461190 @default.
- W4387272222 hasConceptScore W4387272222C2777462759 @default.
- W4387272222 hasConceptScore W4387272222C41008148 @default.
- W4387272222 hasConceptScore W4387272222C41608201 @default.
- W4387272222 hasConceptScore W4387272222C50644808 @default.
- W4387272222 hasConceptScore W4387272222C66402592 @default.
- W4387272222 hasLocation W43872722221 @default.
- W4387272222 hasOpenAccess W4387272222 @default.
- W4387272222 hasPrimaryLocation W43872722221 @default.
- W4387272222 hasRelatedWork W2770162183 @default.
- W4387272222 hasRelatedWork W2798009317 @default.
- W4387272222 hasRelatedWork W2946409105 @default.
- W4387272222 hasRelatedWork W2985392712 @default.
- W4387272222 hasRelatedWork W2998070955 @default.
- W4387272222 hasRelatedWork W3133567596 @default.