Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387275301> ?p ?o ?g. }
- W4387275301 endingPage "258" @default.
- W4387275301 startingPage "239" @default.
- W4387275301 abstract "The primary goal of this paper is to provide an efficient solution algorithm based on the augmented Lagrangian framework for optimization problems with a stochastic objective function and deterministic constraints. Our main contribution is combining the augmented Lagrangian framework with adaptive sampling, resulting in an efficient optimization methodology validated with practical examples. To achieve the presented efficiency, we consider inexact solutions for the augmented Lagrangian subproblems, and through an adaptive sampling mechanism, we control the variance in the gradient estimates. Furthermore, we analyze the theoretical performance of the proposed scheme by showing equivalence to a gradient descent algorithm on a Moreau envelope function, and we prove sublinear convergence for convex objectives and linear convergence for strongly convex objectives with affine equality constraints. The worst-case sample complexity of the resulting algorithm, for an arbitrary choice of penalty parameter in the augmented Lagrangian function, is O(ϵ−3−δ), where ϵ>0 is the expected error of the solution and δ>0 is a user-defined parameter. If the penalty parameter is chosen to be O(ϵ−1), we demonstrate that the result can be improved to O(ϵ−2), which is competitive with the other methods employed in the literature. Moreover, if the objective function is strongly convex with affine equality constraints, we obtain O(ϵ−1log(1/ϵ)) complexity. Finally, we empirically verify the performance of our adaptive sampling augmented Lagrangian framework in machine learning optimization and engineering design problems, including topology optimization of a heat sink with environmental uncertainty." @default.
- W4387275301 created "2023-10-03" @default.
- W4387275301 creator A5001395097 @default.
- W4387275301 creator A5011605206 @default.
- W4387275301 creator A5018678142 @default.
- W4387275301 creator A5036093352 @default.
- W4387275301 creator A5076822068 @default.
- W4387275301 creator A5083156016 @default.
- W4387275301 date "2023-11-01" @default.
- W4387275301 modified "2023-10-17" @default.
- W4387275301 title "An adaptive sampling augmented Lagrangian method for stochastic optimization with deterministic constraints" @default.
- W4387275301 cites W1830979757 @default.
- W4387275301 cites W1837874438 @default.
- W4387275301 cites W1953936588 @default.
- W4387275301 cites W1973706450 @default.
- W4387275301 cites W1975383645 @default.
- W4387275301 cites W1977282511 @default.
- W4387275301 cites W1985077192 @default.
- W4387275301 cites W2028066028 @default.
- W4387275301 cites W2037091587 @default.
- W4387275301 cites W2044774602 @default.
- W4387275301 cites W2057624533 @default.
- W4387275301 cites W2061570747 @default.
- W4387275301 cites W2069041228 @default.
- W4387275301 cites W2081280387 @default.
- W4387275301 cites W2084417257 @default.
- W4387275301 cites W2088527414 @default.
- W4387275301 cites W2093117412 @default.
- W4387275301 cites W2135779729 @default.
- W4387275301 cites W2137633966 @default.
- W4387275301 cites W2141377530 @default.
- W4387275301 cites W2153635508 @default.
- W4387275301 cites W2165530668 @default.
- W4387275301 cites W2166126709 @default.
- W4387275301 cites W2220999736 @default.
- W4387275301 cites W2240332484 @default.
- W4387275301 cites W2262423468 @default.
- W4387275301 cites W2291404204 @default.
- W4387275301 cites W2783919261 @default.
- W4387275301 cites W2900789157 @default.
- W4387275301 cites W2950311990 @default.
- W4387275301 cites W2963312217 @default.
- W4387275301 cites W2963397933 @default.
- W4387275301 cites W2963433607 @default.
- W4387275301 cites W2963465983 @default.
- W4387275301 cites W2963824728 @default.
- W4387275301 cites W2969771825 @default.
- W4387275301 cites W2984763623 @default.
- W4387275301 cites W2999063648 @default.
- W4387275301 cites W3007099432 @default.
- W4387275301 cites W3014703032 @default.
- W4387275301 cites W3035335410 @default.
- W4387275301 cites W3035804846 @default.
- W4387275301 cites W3048191572 @default.
- W4387275301 cites W3103657382 @default.
- W4387275301 cites W3112994519 @default.
- W4387275301 cites W3118187729 @default.
- W4387275301 cites W3128112448 @default.
- W4387275301 cites W3161641506 @default.
- W4387275301 cites W3206860823 @default.
- W4387275301 cites W3207167972 @default.
- W4387275301 cites W4226291750 @default.
- W4387275301 cites W4244393449 @default.
- W4387275301 cites W4296656558 @default.
- W4387275301 doi "https://doi.org/10.1016/j.camwa.2023.09.014" @default.
- W4387275301 hasPublicationYear "2023" @default.
- W4387275301 type Work @default.
- W4387275301 citedByCount "0" @default.
- W4387275301 crossrefType "journal-article" @default.
- W4387275301 hasAuthorship W4387275301A5001395097 @default.
- W4387275301 hasAuthorship W4387275301A5011605206 @default.
- W4387275301 hasAuthorship W4387275301A5018678142 @default.
- W4387275301 hasAuthorship W4387275301A5036093352 @default.
- W4387275301 hasAuthorship W4387275301A5076822068 @default.
- W4387275301 hasAuthorship W4387275301A5083156016 @default.
- W4387275301 hasConcept C126255220 @default.
- W4387275301 hasConcept C137836250 @default.
- W4387275301 hasConcept C150452318 @default.
- W4387275301 hasConcept C162324750 @default.
- W4387275301 hasConcept C194387892 @default.
- W4387275301 hasConcept C202444582 @default.
- W4387275301 hasConcept C2777303404 @default.
- W4387275301 hasConcept C33923547 @default.
- W4387275301 hasConcept C50522688 @default.
- W4387275301 hasConcept C92757383 @default.
- W4387275301 hasConceptScore W4387275301C126255220 @default.
- W4387275301 hasConceptScore W4387275301C137836250 @default.
- W4387275301 hasConceptScore W4387275301C150452318 @default.
- W4387275301 hasConceptScore W4387275301C162324750 @default.
- W4387275301 hasConceptScore W4387275301C194387892 @default.
- W4387275301 hasConceptScore W4387275301C202444582 @default.
- W4387275301 hasConceptScore W4387275301C2777303404 @default.
- W4387275301 hasConceptScore W4387275301C33923547 @default.
- W4387275301 hasConceptScore W4387275301C50522688 @default.
- W4387275301 hasConceptScore W4387275301C92757383 @default.
- W4387275301 hasLocation W43872753011 @default.
- W4387275301 hasOpenAccess W4387275301 @default.
- W4387275301 hasPrimaryLocation W43872753011 @default.