Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387296066> ?p ?o ?g. }
- W4387296066 abstract "Background Screening for nonalcoholic fatty liver disease (NAFLD) is suboptimal due to the subjective interpretation of US images. Purpose To evaluate the agreement and diagnostic performance of radiologists and a deep learning model in grading hepatic steatosis in NAFLD at US, with biopsy as the reference standard. Materials and Methods This retrospective study included patients with NAFLD and control patients without hepatic steatosis who underwent abdominal US and contemporaneous liver biopsy from September 2010 to October 2019. Six readers visually graded steatosis on US images twice, 2 weeks apart. Reader agreement was assessed with use of κ statistics. Three deep learning techniques applied to B-mode US images were used to classify dichotomized steatosis grades. Classification performance of human radiologists and the deep learning model for dichotomized steatosis grades (S0, S1, S2, and S3) was assessed with area under the receiver operating characteristic curve (AUC) on a separate test set. Results The study included 199 patients (mean age, 53 years ± 13 [SD]; 101 men). On the test set (n = 52), radiologists had fair interreader agreement (0.34 [95% CI: 0.31, 0.37]) for classifying steatosis grades S0 versus S1 or higher, while AUCs were between 0.49 and 0.84 for radiologists and 0.85 (95% CI: 0.83, 0.87) for the deep learning model. For S0 or S1 versus S2 or S3, radiologists had fair interreader agreement (0.30 [95% CI: 0.27, 0.33]), while AUCs were between 0.57 and 0.76 for radiologists and 0.73 (95% CI: 0.71, 0.75) for the deep learning model. For S2 or lower versus S3, radiologists had fair interreader agreement (0.37 [95% CI: 0.33, 0.40]), while AUCs were between 0.52 and 0.81 for radiologists and 0.67 (95% CI: 0.64, 0.69) for the deep learning model. Conclusion Deep learning approaches applied to B-mode US images provided comparable performance with human readers for detection and grading of hepatic steatosis. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Tuthill in this issue." @default.
- W4387296066 created "2023-10-04" @default.
- W4387296066 creator A5003074300 @default.
- W4387296066 creator A5005117825 @default.
- W4387296066 creator A5010509683 @default.
- W4387296066 creator A5010841516 @default.
- W4387296066 creator A5015244973 @default.
- W4387296066 creator A5016732965 @default.
- W4387296066 creator A5018292151 @default.
- W4387296066 creator A5025113992 @default.
- W4387296066 creator A5028065882 @default.
- W4387296066 creator A5030943032 @default.
- W4387296066 creator A5035912152 @default.
- W4387296066 creator A5039187492 @default.
- W4387296066 creator A5043774060 @default.
- W4387296066 creator A5045195876 @default.
- W4387296066 creator A5048939531 @default.
- W4387296066 creator A5049757428 @default.
- W4387296066 creator A5051558381 @default.
- W4387296066 creator A5055430458 @default.
- W4387296066 creator A5065163589 @default.
- W4387296066 creator A5081144754 @default.
- W4387296066 creator A5091914817 @default.
- W4387296066 creator A5092991711 @default.
- W4387296066 creator A5092991712 @default.
- W4387296066 creator A5092991713 @default.
- W4387296066 date "2023-10-01" @default.
- W4387296066 modified "2023-10-04" @default.
- W4387296066 title "Comparison of Radiologists and Deep Learning for US Grading of Hepatic Steatosis" @default.
- W4387296066 cites W1995727781 @default.
- W4387296066 cites W2000924423 @default.
- W4387296066 cites W2001645820 @default.
- W4387296066 cites W2011598999 @default.
- W4387296066 cites W2021757019 @default.
- W4387296066 cites W2025204335 @default.
- W4387296066 cites W2039238366 @default.
- W4387296066 cites W2042024480 @default.
- W4387296066 cites W2060205727 @default.
- W4387296066 cites W2067740038 @default.
- W4387296066 cites W2076450230 @default.
- W4387296066 cites W2085043158 @default.
- W4387296066 cites W2107742679 @default.
- W4387296066 cites W2127299198 @default.
- W4387296066 cites W2164252555 @default.
- W4387296066 cites W2167439606 @default.
- W4387296066 cites W2592929672 @default.
- W4387296066 cites W2755909350 @default.
- W4387296066 cites W2756974800 @default.
- W4387296066 cites W2767236661 @default.
- W4387296066 cites W2806839461 @default.
- W4387296066 cites W2885478230 @default.
- W4387296066 cites W2919791281 @default.
- W4387296066 cites W2920980943 @default.
- W4387296066 cites W2953320409 @default.
- W4387296066 cites W3032764835 @default.
- W4387296066 cites W3160163020 @default.
- W4387296066 cites W3198113378 @default.
- W4387296066 cites W3198576039 @default.
- W4387296066 cites W347101954 @default.
- W4387296066 cites W4224245122 @default.
- W4387296066 cites W4295359249 @default.
- W4387296066 cites W4315619045 @default.
- W4387296066 doi "https://doi.org/10.1148/radiol.230659" @default.
- W4387296066 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37787678" @default.
- W4387296066 hasPublicationYear "2023" @default.
- W4387296066 type Work @default.
- W4387296066 citedByCount "0" @default.
- W4387296066 crossrefType "journal-article" @default.
- W4387296066 hasAuthorship W4387296066A5003074300 @default.
- W4387296066 hasAuthorship W4387296066A5005117825 @default.
- W4387296066 hasAuthorship W4387296066A5010509683 @default.
- W4387296066 hasAuthorship W4387296066A5010841516 @default.
- W4387296066 hasAuthorship W4387296066A5015244973 @default.
- W4387296066 hasAuthorship W4387296066A5016732965 @default.
- W4387296066 hasAuthorship W4387296066A5018292151 @default.
- W4387296066 hasAuthorship W4387296066A5025113992 @default.
- W4387296066 hasAuthorship W4387296066A5028065882 @default.
- W4387296066 hasAuthorship W4387296066A5030943032 @default.
- W4387296066 hasAuthorship W4387296066A5035912152 @default.
- W4387296066 hasAuthorship W4387296066A5039187492 @default.
- W4387296066 hasAuthorship W4387296066A5043774060 @default.
- W4387296066 hasAuthorship W4387296066A5045195876 @default.
- W4387296066 hasAuthorship W4387296066A5048939531 @default.
- W4387296066 hasAuthorship W4387296066A5049757428 @default.
- W4387296066 hasAuthorship W4387296066A5051558381 @default.
- W4387296066 hasAuthorship W4387296066A5055430458 @default.
- W4387296066 hasAuthorship W4387296066A5065163589 @default.
- W4387296066 hasAuthorship W4387296066A5081144754 @default.
- W4387296066 hasAuthorship W4387296066A5091914817 @default.
- W4387296066 hasAuthorship W4387296066A5092991711 @default.
- W4387296066 hasAuthorship W4387296066A5092991712 @default.
- W4387296066 hasAuthorship W4387296066A5092991713 @default.
- W4387296066 hasConcept C126322002 @default.
- W4387296066 hasConcept C126838900 @default.
- W4387296066 hasConcept C127413603 @default.
- W4387296066 hasConcept C147176958 @default.
- W4387296066 hasConcept C167135981 @default.
- W4387296066 hasConcept C2775934546 @default.
- W4387296066 hasConcept C2776175330 @default.
- W4387296066 hasConcept C2776954865 @default.