Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387296721> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4387296721 abstract "To validate a novel deep learning-based metal artifact correction (MAC) algorithm for CT, namely, AI-MAC, in preclinical setting with comparison to conventional MAC and virtual monochromatic imaging (VMI) technique.An experimental phantom was designed by consecutively inserting two sets of pedicle screws (size Φ 6.5 × 30-mm and Φ 7.5 × 40-mm) into a vertebral specimen to simulate the clinical scenario of metal implantation. The resulting MAC, VMI, and AI-MAC images were compared with respect to the metal-free reference image by subjective scoring, as well as by CT attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and correction accuracy via adaptive segmentation of the paraspinal muscle and vertebral body.The AI-MAC and VMI images showed significantly higher subjective scores than the MAC image (all p < 0.05). The SNRs and CNRs on the AI-MAC image were comparable to the reference (all p > 0.05), whereas those on the VMI were significantly lower (all p < 0.05). The paraspinal muscle segmented on the AI-MAC image was 4.6% and 5.1% more complete to the VMI and MAC images for the Φ 6.5 × 30-mm screws, and 5.0% and 5.1% for the Φ 7.5 × 40-mm screws, respectively. The vertebral body segmented on the VMI was closest to the reference, with only 3.2% and 7.4% overestimation for Φ 6.5 × 30-mm and Φ 7.5 × 40-mm screws, respectively.Using metal-free reference as the ground truth for comparison, the AI-MAC outperforms VMI in characterizing soft tissue, while VMI is useful in skeletal depiction." @default.
- W4387296721 created "2023-10-04" @default.
- W4387296721 creator A5007322337 @default.
- W4387296721 creator A5008956588 @default.
- W4387296721 creator A5012793150 @default.
- W4387296721 creator A5035297011 @default.
- W4387296721 creator A5035534190 @default.
- W4387296721 creator A5048849881 @default.
- W4387296721 creator A5068774591 @default.
- W4387296721 creator A5069152730 @default.
- W4387296721 creator A5082803863 @default.
- W4387296721 creator A5085612104 @default.
- W4387296721 date "2023-10-03" @default.
- W4387296721 modified "2023-10-05" @default.
- W4387296721 title "Preclinical validation of a novel deep learning‐based metal artifact correction algorithm for orthopedic CT imaging" @default.
- W4387296721 cites W1972105774 @default.
- W4387296721 cites W2001749871 @default.
- W4387296721 cites W2030027103 @default.
- W4387296721 cites W2039436151 @default.
- W4387296721 cites W2065588252 @default.
- W4387296721 cites W2079127706 @default.
- W4387296721 cites W2093244586 @default.
- W4387296721 cites W2101891472 @default.
- W4387296721 cites W2154129661 @default.
- W4387296721 cites W2157955902 @default.
- W4387296721 cites W2167036988 @default.
- W4387296721 cites W2216046350 @default.
- W4387296721 cites W2520526731 @default.
- W4387296721 cites W2755362955 @default.
- W4387296721 cites W2799354508 @default.
- W4387296721 cites W2905530762 @default.
- W4387296721 cites W2978699511 @default.
- W4387296721 cites W3027638321 @default.
- W4387296721 cites W3087234158 @default.
- W4387296721 cites W3126423324 @default.
- W4387296721 cites W3129528388 @default.
- W4387296721 cites W3187589338 @default.
- W4387296721 cites W4206457879 @default.
- W4387296721 cites W4213365204 @default.
- W4387296721 cites W4220798735 @default.
- W4387296721 cites W4225716427 @default.
- W4387296721 cites W4229037409 @default.
- W4387296721 cites W4307336517 @default.
- W4387296721 cites W4315702537 @default.
- W4387296721 doi "https://doi.org/10.1002/acm2.14166" @default.
- W4387296721 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37787513" @default.
- W4387296721 hasPublicationYear "2023" @default.
- W4387296721 type Work @default.
- W4387296721 citedByCount "0" @default.
- W4387296721 crossrefType "journal-article" @default.
- W4387296721 hasAuthorship W4387296721A5007322337 @default.
- W4387296721 hasAuthorship W4387296721A5008956588 @default.
- W4387296721 hasAuthorship W4387296721A5012793150 @default.
- W4387296721 hasAuthorship W4387296721A5035297011 @default.
- W4387296721 hasAuthorship W4387296721A5035534190 @default.
- W4387296721 hasAuthorship W4387296721A5048849881 @default.
- W4387296721 hasAuthorship W4387296721A5068774591 @default.
- W4387296721 hasAuthorship W4387296721A5069152730 @default.
- W4387296721 hasAuthorship W4387296721A5082803863 @default.
- W4387296721 hasAuthorship W4387296721A5085612104 @default.
- W4387296721 hasBestOaLocation W43872967211 @default.
- W4387296721 hasConcept C104293457 @default.
- W4387296721 hasConcept C154945302 @default.
- W4387296721 hasConcept C2779010991 @default.
- W4387296721 hasConcept C2989005 @default.
- W4387296721 hasConcept C41008148 @default.
- W4387296721 hasConcept C71924100 @default.
- W4387296721 hasConcept C89600930 @default.
- W4387296721 hasConceptScore W4387296721C104293457 @default.
- W4387296721 hasConceptScore W4387296721C154945302 @default.
- W4387296721 hasConceptScore W4387296721C2779010991 @default.
- W4387296721 hasConceptScore W4387296721C2989005 @default.
- W4387296721 hasConceptScore W4387296721C41008148 @default.
- W4387296721 hasConceptScore W4387296721C71924100 @default.
- W4387296721 hasConceptScore W4387296721C89600930 @default.
- W4387296721 hasLocation W43872967211 @default.
- W4387296721 hasLocation W43872967212 @default.
- W4387296721 hasOpenAccess W4387296721 @default.
- W4387296721 hasPrimaryLocation W43872967211 @default.
- W4387296721 hasRelatedWork W1998364948 @default.
- W4387296721 hasRelatedWork W2003734918 @default.
- W4387296721 hasRelatedWork W2097713760 @default.
- W4387296721 hasRelatedWork W2152735515 @default.
- W4387296721 hasRelatedWork W2333185159 @default.
- W4387296721 hasRelatedWork W2748952813 @default.
- W4387296721 hasRelatedWork W2789183689 @default.
- W4387296721 hasRelatedWork W2899084033 @default.
- W4387296721 hasRelatedWork W2924649415 @default.
- W4387296721 hasRelatedWork W3158658726 @default.
- W4387296721 isParatext "false" @default.
- W4387296721 isRetracted "false" @default.
- W4387296721 workType "article" @default.