Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387297890> ?p ?o ?g. }
- W4387297890 endingPage "122028" @default.
- W4387297890 startingPage "122028" @default.
- W4387297890 abstract "Optimum design for microgrids that include renewable energy sources (RESs) is a complex process that requires optimization across a wide range of factors, including economic, technological, and environmental effectiveness. The inverter-connected RES units lack the rotational mass required to maintain the system’s inertia and can result in significant frequency instability during disturbances. The battery energy storage system-based virtual synchronous generator (BESS-VSG) is a unique approach to address this challenge since it mimics a conventional synchronous generator (SG) using the inverter regulation concept. Furthermore, given the recent rise in electric vehicles (EVs), EV owners’ charging patterns impact the microgrid’s operational, financial, and technological aspects. Therefore, this research offers a novel Modified Multi-objective Salp Swarm Optimization Algorithm (MMOSSA)-based technique for optimal photovoltaic (PV), wind turbine (WT), BESS-VSG, and EV charging station (EVCS) allocation on microgrids. The objective function is designed to optimize the total net present cost (TNPC), levelized cost of electricity (LCOE), energy loss, frequency deviation, voltage stability indicator (VSI), and carbon emissions. The proposed strategy is evaluated on two real-world grid networks: Masirah Island in Oman and Ankara in Turkey, where wind prospects, solar potential, and EV charging patterns are conflicting. This study investigated PV/BESS-VSG, WT/BESS-VSG, and PV/WT/BESS-VSG configurations regarding the weather and load variability for the two test networks. The obtained results demonstrate that the PV/WT/BESS-VSG is the best choice for both the test networks, with TNPC values of 261030.9 $ and 303840.5 $, respectively, and LCOE values of 0.0383 $/kWh and 0.0469 $/kWh, respectively. The carbon emissions are reduced by 88.8% and 87.3% for the two test networks, respectively. In addition, with the accurate PV/WT/VSG design and appropriate EVCS placements, the microgrids’ renewable fraction, the quantity of sold energy, and technical characteristics improved significantly. Moreover, employing numerical analysis, different loss of power supply probability (LPSP) values, spacing index, and hyper-volume index, the suggested MMOSSA method is compared to five relevant multi-objective optimization strategies. The findings demonstrate that the MMOSSA Pareto fronts offer better solutions across all the assessments." @default.
- W4387297890 created "2023-10-04" @default.
- W4387297890 creator A5007087804 @default.
- W4387297890 creator A5047034458 @default.
- W4387297890 creator A5048469665 @default.
- W4387297890 creator A5073390695 @default.
- W4387297890 creator A5084917798 @default.
- W4387297890 date "2024-01-01" @default.
- W4387297890 modified "2023-10-04" @default.
- W4387297890 title "Techno-economic and environmental assessment of renewable energy sources, virtual synchronous generators, and electric vehicle charging stations in microgrids" @default.
- W4387297890 cites W1976115074 @default.
- W4387297890 cites W2001477840 @default.
- W4387297890 cites W2007798106 @default.
- W4387297890 cites W2062173711 @default.
- W4387297890 cites W2101836934 @default.
- W4387297890 cites W2139170472 @default.
- W4387297890 cites W2146016629 @default.
- W4387297890 cites W2467348503 @default.
- W4387297890 cites W2607491490 @default.
- W4387297890 cites W2738900493 @default.
- W4387297890 cites W2954142738 @default.
- W4387297890 cites W2971328465 @default.
- W4387297890 cites W2974666883 @default.
- W4387297890 cites W2995595179 @default.
- W4387297890 cites W3006208194 @default.
- W4387297890 cites W3006424594 @default.
- W4387297890 cites W3007533444 @default.
- W4387297890 cites W3017716803 @default.
- W4387297890 cites W3025056570 @default.
- W4387297890 cites W3035073510 @default.
- W4387297890 cites W3091252170 @default.
- W4387297890 cites W3112507317 @default.
- W4387297890 cites W3112730905 @default.
- W4387297890 cites W3129363434 @default.
- W4387297890 cites W3164132336 @default.
- W4387297890 cites W3171941756 @default.
- W4387297890 cites W3181600571 @default.
- W4387297890 cites W3195634357 @default.
- W4387297890 cites W3210071784 @default.
- W4387297890 cites W4206616869 @default.
- W4387297890 cites W4213274485 @default.
- W4387297890 cites W4221062684 @default.
- W4387297890 cites W4221091193 @default.
- W4387297890 cites W4226083091 @default.
- W4387297890 cites W4229042902 @default.
- W4387297890 cites W4229062922 @default.
- W4387297890 cites W4255965682 @default.
- W4387297890 cites W4283465268 @default.
- W4387297890 cites W4283701705 @default.
- W4387297890 cites W4284882798 @default.
- W4387297890 cites W4293097056 @default.
- W4387297890 cites W4293578029 @default.
- W4387297890 cites W4297984246 @default.
- W4387297890 cites W4303983779 @default.
- W4387297890 cites W4311774558 @default.
- W4387297890 cites W4313567487 @default.
- W4387297890 cites W4313578170 @default.
- W4387297890 cites W4320521210 @default.
- W4387297890 cites W4321767613 @default.
- W4387297890 cites W4327546979 @default.
- W4387297890 cites W4360611391 @default.
- W4387297890 cites W4362678014 @default.
- W4387297890 cites W4365814227 @default.
- W4387297890 cites W4365814826 @default.
- W4387297890 cites W4368408227 @default.
- W4387297890 cites W4377261919 @default.
- W4387297890 cites W4382203089 @default.
- W4387297890 cites W801863156 @default.
- W4387297890 doi "https://doi.org/10.1016/j.apenergy.2023.122028" @default.
- W4387297890 hasPublicationYear "2024" @default.
- W4387297890 type Work @default.
- W4387297890 citedByCount "0" @default.
- W4387297890 crossrefType "journal-article" @default.
- W4387297890 hasAuthorship W4387297890A5007087804 @default.
- W4387297890 hasAuthorship W4387297890A5047034458 @default.
- W4387297890 hasAuthorship W4387297890A5048469665 @default.
- W4387297890 hasAuthorship W4387297890A5073390695 @default.
- W4387297890 hasAuthorship W4387297890A5084917798 @default.
- W4387297890 hasBestOaLocation W43872978901 @default.
- W4387297890 hasConcept C11190779 @default.
- W4387297890 hasConcept C119599485 @default.
- W4387297890 hasConcept C119857082 @default.
- W4387297890 hasConcept C121332964 @default.
- W4387297890 hasConcept C127413603 @default.
- W4387297890 hasConcept C163258240 @default.
- W4387297890 hasConcept C165801399 @default.
- W4387297890 hasConcept C171146098 @default.
- W4387297890 hasConcept C188573790 @default.
- W4387297890 hasConcept C200601418 @default.
- W4387297890 hasConcept C2776422217 @default.
- W4387297890 hasConcept C2776784348 @default.
- W4387297890 hasConcept C41008148 @default.
- W4387297890 hasConcept C41291067 @default.
- W4387297890 hasConcept C423512 @default.
- W4387297890 hasConcept C5979214 @default.
- W4387297890 hasConcept C62520636 @default.
- W4387297890 hasConcept C85617194 @default.
- W4387297890 hasConceptScore W4387297890C11190779 @default.