Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387299563> ?p ?o ?g. }
- W4387299563 abstract "Drawing on ergodic theory, we introduce a novel training method for machine learning based forecasting methods for chaotic dynamical systems. The training enforces dynamical invariants—such as the Lyapunov exponent spectrum and the fractal dimension—in the systems of interest, enabling longer and more stable forecasts when operating with limited data. The technique is demonstrated in detail using reservoir computing, a specific kind of recurrent neural network. Results are given for the Lorenz 1996 chaotic dynamical system and a spectral quasi-geostrophic model of the atmosphere, both typical test cases for numerical weather prediction." @default.
- W4387299563 created "2023-10-04" @default.
- W4387299563 creator A5005081662 @default.
- W4387299563 creator A5030585708 @default.
- W4387299563 creator A5055335035 @default.
- W4387299563 creator A5079243211 @default.
- W4387299563 creator A5089487683 @default.
- W4387299563 date "2023-10-01" @default.
- W4387299563 modified "2023-10-05" @default.
- W4387299563 title "Constraining chaos: Enforcing dynamical invariants in the training of reservoir computers" @default.
- W4387299563 cites W1966397236 @default.
- W4387299563 cites W1970738437 @default.
- W4387299563 cites W1998727969 @default.
- W4387299563 cites W2014171230 @default.
- W4387299563 cites W2018522871 @default.
- W4387299563 cites W2040628765 @default.
- W4387299563 cites W2042619282 @default.
- W4387299563 cites W2047286795 @default.
- W4387299563 cites W2103179919 @default.
- W4387299563 cites W2105934661 @default.
- W4387299563 cites W2106936158 @default.
- W4387299563 cites W2110485445 @default.
- W4387299563 cites W2118706537 @default.
- W4387299563 cites W2124428761 @default.
- W4387299563 cites W2138537392 @default.
- W4387299563 cites W2142849149 @default.
- W4387299563 cites W2156221689 @default.
- W4387299563 cites W2164284840 @default.
- W4387299563 cites W2171865010 @default.
- W4387299563 cites W2177933918 @default.
- W4387299563 cites W2335267492 @default.
- W4387299563 cites W2808720320 @default.
- W4387299563 cites W2899283552 @default.
- W4387299563 cites W2971940059 @default.
- W4387299563 cites W3010849941 @default.
- W4387299563 cites W3012621877 @default.
- W4387299563 cites W3047626512 @default.
- W4387299563 cites W3100050954 @default.
- W4387299563 cites W3101278268 @default.
- W4387299563 cites W3101493339 @default.
- W4387299563 cites W3102502580 @default.
- W4387299563 cites W3115758238 @default.
- W4387299563 cites W3138221355 @default.
- W4387299563 cites W3163993681 @default.
- W4387299563 cites W3196800676 @default.
- W4387299563 cites W3217128094 @default.
- W4387299563 cites W4212948582 @default.
- W4387299563 cites W4285682826 @default.
- W4387299563 doi "https://doi.org/10.1063/5.0156999" @default.
- W4387299563 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37788385" @default.
- W4387299563 hasPublicationYear "2023" @default.
- W4387299563 type Work @default.
- W4387299563 citedByCount "0" @default.
- W4387299563 crossrefType "journal-article" @default.
- W4387299563 hasAuthorship W4387299563A5005081662 @default.
- W4387299563 hasAuthorship W4387299563A5030585708 @default.
- W4387299563 hasAuthorship W4387299563A5055335035 @default.
- W4387299563 hasAuthorship W4387299563A5079243211 @default.
- W4387299563 hasAuthorship W4387299563A5089487683 @default.
- W4387299563 hasConcept C118979974 @default.
- W4387299563 hasConcept C121332964 @default.
- W4387299563 hasConcept C121864883 @default.
- W4387299563 hasConcept C122044880 @default.
- W4387299563 hasConcept C134306372 @default.
- W4387299563 hasConcept C135796866 @default.
- W4387299563 hasConcept C147168706 @default.
- W4387299563 hasConcept C151510863 @default.
- W4387299563 hasConcept C154945302 @default.
- W4387299563 hasConcept C191544260 @default.
- W4387299563 hasConcept C202444582 @default.
- W4387299563 hasConcept C2777052490 @default.
- W4387299563 hasConcept C28826006 @default.
- W4387299563 hasConcept C33676613 @default.
- W4387299563 hasConcept C33923547 @default.
- W4387299563 hasConcept C33962884 @default.
- W4387299563 hasConcept C40636538 @default.
- W4387299563 hasConcept C41008148 @default.
- W4387299563 hasConcept C50644808 @default.
- W4387299563 hasConcept C62520636 @default.
- W4387299563 hasConcept C79379906 @default.
- W4387299563 hasConcept C92866567 @default.
- W4387299563 hasConceptScore W4387299563C118979974 @default.
- W4387299563 hasConceptScore W4387299563C121332964 @default.
- W4387299563 hasConceptScore W4387299563C121864883 @default.
- W4387299563 hasConceptScore W4387299563C122044880 @default.
- W4387299563 hasConceptScore W4387299563C134306372 @default.
- W4387299563 hasConceptScore W4387299563C135796866 @default.
- W4387299563 hasConceptScore W4387299563C147168706 @default.
- W4387299563 hasConceptScore W4387299563C151510863 @default.
- W4387299563 hasConceptScore W4387299563C154945302 @default.
- W4387299563 hasConceptScore W4387299563C191544260 @default.
- W4387299563 hasConceptScore W4387299563C202444582 @default.
- W4387299563 hasConceptScore W4387299563C2777052490 @default.
- W4387299563 hasConceptScore W4387299563C28826006 @default.
- W4387299563 hasConceptScore W4387299563C33676613 @default.
- W4387299563 hasConceptScore W4387299563C33923547 @default.
- W4387299563 hasConceptScore W4387299563C33962884 @default.
- W4387299563 hasConceptScore W4387299563C40636538 @default.
- W4387299563 hasConceptScore W4387299563C41008148 @default.
- W4387299563 hasConceptScore W4387299563C50644808 @default.