Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387301423> ?p ?o ?g. }
- W4387301423 endingPage "110822" @default.
- W4387301423 startingPage "110822" @default.
- W4387301423 abstract "The primary objective of conducting deviation analysis in the context of assembly process is to ascertain and guarantee the quality and precision of the final product. The deviation analysis is important for components that are prone to deformation. The conventional analysis approach primarily relies on the identification of local feature points on individual components to establish relationship between deviations before and after assembly. However, the method does not sufficiently represent the spatial distribution of deviations across the parts. The conventional approach also fails to account for shape inaccuracies and the influence of multiple sources of deviation coupling to certain degree. Therefore, this paper proposes a novel deviation framework for analyzing the sheet metal assembly process based on the skin model shapes and a conditional Generative Adversarial Network (cGAN). The cross-scale shape errors of the critical feature surfaces are modeled by taking the statistical parameters into account. Additionally, the contour maps of the established surface models and the multiple-source deviations are combined using images in order to construct the data for the flexible deviation network models. Then, the finite element method is used to simulate the assembly process, yielding the final component deviations. The contour maps of the assembly deviations and the images of the part deviations are utilized as the input conditions and ground truth for the dataset. The simulations and experiments conducted in this study provide evidence to support the effectiveness of the proposed method in predicting field-to-field deviation deformation. The results indicate that the proposed method outperforms traditional approaches in terms of accuracy. Furthermore, this approach enables end-to-end deviation prediction. The well-trained model is capable of directly outputting the corresponding predicted deviations given input of deviation factors. By employing such a deviation analysis framework, it enables achieve an accurate and high efficiency analysis in the assembly process." @default.
- W4387301423 created "2023-10-04" @default.
- W4387301423 creator A5001958960 @default.
- W4387301423 creator A5007203915 @default.
- W4387301423 creator A5011474402 @default.
- W4387301423 creator A5013864233 @default.
- W4387301423 creator A5086017395 @default.
- W4387301423 creator A5092125530 @default.
- W4387301423 date "2023-12-01" @default.
- W4387301423 modified "2023-10-09" @default.
- W4387301423 title "DeviationGAN: A generative end-to-end approach for the deviation prediction of sheet metal assembly" @default.
- W4387301423 cites W1490520840 @default.
- W4387301423 cites W1901129140 @default.
- W4387301423 cites W1964074995 @default.
- W4387301423 cites W1980613493 @default.
- W4387301423 cites W2008701986 @default.
- W4387301423 cites W2031443359 @default.
- W4387301423 cites W2035923078 @default.
- W4387301423 cites W2038139547 @default.
- W4387301423 cites W2039970118 @default.
- W4387301423 cites W2060694783 @default.
- W4387301423 cites W2063934923 @default.
- W4387301423 cites W2084597451 @default.
- W4387301423 cites W2086560329 @default.
- W4387301423 cites W2145793961 @default.
- W4387301423 cites W2154983631 @default.
- W4387301423 cites W2286337493 @default.
- W4387301423 cites W2346779587 @default.
- W4387301423 cites W2593414223 @default.
- W4387301423 cites W2618530766 @default.
- W4387301423 cites W2736866268 @default.
- W4387301423 cites W2808072582 @default.
- W4387301423 cites W2926464776 @default.
- W4387301423 cites W2963073614 @default.
- W4387301423 cites W2963470893 @default.
- W4387301423 cites W2970612144 @default.
- W4387301423 cites W3000004607 @default.
- W4387301423 cites W3014796041 @default.
- W4387301423 cites W3087811445 @default.
- W4387301423 cites W3092304538 @default.
- W4387301423 cites W3121733470 @default.
- W4387301423 cites W3145017754 @default.
- W4387301423 cites W3166589044 @default.
- W4387301423 cites W3173358377 @default.
- W4387301423 cites W3207227955 @default.
- W4387301423 cites W4200633382 @default.
- W4387301423 cites W4280560388 @default.
- W4387301423 cites W4281785895 @default.
- W4387301423 cites W4353061262 @default.
- W4387301423 cites W4362722178 @default.
- W4387301423 cites W4377047322 @default.
- W4387301423 cites W4380048003 @default.
- W4387301423 cites W654351113 @default.
- W4387301423 doi "https://doi.org/10.1016/j.ymssp.2023.110822" @default.
- W4387301423 hasPublicationYear "2023" @default.
- W4387301423 type Work @default.
- W4387301423 citedByCount "0" @default.
- W4387301423 crossrefType "journal-article" @default.
- W4387301423 hasAuthorship W4387301423A5001958960 @default.
- W4387301423 hasAuthorship W4387301423A5007203915 @default.
- W4387301423 hasAuthorship W4387301423A5011474402 @default.
- W4387301423 hasAuthorship W4387301423A5013864233 @default.
- W4387301423 hasAuthorship W4387301423A5086017395 @default.
- W4387301423 hasAuthorship W4387301423A5092125530 @default.
- W4387301423 hasConcept C105795698 @default.
- W4387301423 hasConcept C111919701 @default.
- W4387301423 hasConcept C11413529 @default.
- W4387301423 hasConcept C124101348 @default.
- W4387301423 hasConcept C127413603 @default.
- W4387301423 hasConcept C138885662 @default.
- W4387301423 hasConcept C146849305 @default.
- W4387301423 hasConcept C146978453 @default.
- W4387301423 hasConcept C151730666 @default.
- W4387301423 hasConcept C153180895 @default.
- W4387301423 hasConcept C154945302 @default.
- W4387301423 hasConcept C202444582 @default.
- W4387301423 hasConcept C204323151 @default.
- W4387301423 hasConcept C22679943 @default.
- W4387301423 hasConcept C2776401178 @default.
- W4387301423 hasConcept C2779343474 @default.
- W4387301423 hasConcept C2779747408 @default.
- W4387301423 hasConcept C33923547 @default.
- W4387301423 hasConcept C41008148 @default.
- W4387301423 hasConcept C41895202 @default.
- W4387301423 hasConcept C78519656 @default.
- W4387301423 hasConcept C86803240 @default.
- W4387301423 hasConcept C9652623 @default.
- W4387301423 hasConcept C98045186 @default.
- W4387301423 hasConceptScore W4387301423C105795698 @default.
- W4387301423 hasConceptScore W4387301423C111919701 @default.
- W4387301423 hasConceptScore W4387301423C11413529 @default.
- W4387301423 hasConceptScore W4387301423C124101348 @default.
- W4387301423 hasConceptScore W4387301423C127413603 @default.
- W4387301423 hasConceptScore W4387301423C138885662 @default.
- W4387301423 hasConceptScore W4387301423C146849305 @default.
- W4387301423 hasConceptScore W4387301423C146978453 @default.
- W4387301423 hasConceptScore W4387301423C151730666 @default.
- W4387301423 hasConceptScore W4387301423C153180895 @default.