Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387303122> ?p ?o ?g. }
- W4387303122 endingPage "129275" @default.
- W4387303122 startingPage "129275" @default.
- W4387303122 abstract "Uncertainty prediction of vessel trajectory is essential to enhance maritime situational awareness and traffic safety. Traditional approaches for trajectory prediction face challenges in accurately quantifying uncertainties, thereby limiting effectiveness in decision-making. To address this challenge, we propose a hybrid interval prediction frame of vessel trajectory using the lower and upper bound estimation (LUBE) and attention-modified long short-term memory (LSTM) network with bayesian optimization (BO). Firstly, trajectory data is preprocessed to solve the scale irregularity. Then, a novel trajectory interval prediction model for perceiving the prediction uncertainties is designed based on an advanced attention-modified LSTM with interval prediction capability. Meanwhile, a supervised training strategy with differentiating the interval widths of latitude and longitude is put forward to devise sample labels for training the model. Additionally, a new prediction interval-based objective function is proposed considering the target of maximizing coverage and minimizing width of trajectory interval. The BO algorithm optimizes the weighted parameters in the LSTM network by minimizing the objective function value. Finally, cases from two water areas are implemented to test and verify the proposed method. The results illustrate the superiority of the proposed approach in (1) outperforming other methods used for comparison in both coverage probability and width criteria of prediction interval. (2) quantifying the prediction uncertainty and improving the reliability of trajectory predictor. (3) performing anomaly detection tasks using visualized trajectory prediction intervals. The research can help maritime traffic participants obtain more reliable trajectory data, which supports making more reasonable traffic supervision decisions." @default.
- W4387303122 created "2023-10-04" @default.
- W4387303122 creator A5030821637 @default.
- W4387303122 creator A5057916132 @default.
- W4387303122 creator A5061907283 @default.
- W4387303122 creator A5074915391 @default.
- W4387303122 creator A5092993366 @default.
- W4387303122 date "2023-11-01" @default.
- W4387303122 modified "2023-10-16" @default.
- W4387303122 title "Interval Prediction of Vessel Trajectory Based on Lower and Upper Bound Estimation and Attention-modified LSTM with Bayesian Optimization" @default.
- W4387303122 cites W2013052821 @default.
- W4387303122 cites W2055336003 @default.
- W4387303122 cites W2068928057 @default.
- W4387303122 cites W2132477882 @default.
- W4387303122 cites W2144830515 @default.
- W4387303122 cites W2300805880 @default.
- W4387303122 cites W2800773882 @default.
- W4387303122 cites W2807252330 @default.
- W4387303122 cites W2913323966 @default.
- W4387303122 cites W2917680112 @default.
- W4387303122 cites W2944791333 @default.
- W4387303122 cites W2944851425 @default.
- W4387303122 cites W2951402759 @default.
- W4387303122 cites W2953129103 @default.
- W4387303122 cites W2964482263 @default.
- W4387303122 cites W2984148598 @default.
- W4387303122 cites W3026482450 @default.
- W4387303122 cites W3080220156 @default.
- W4387303122 cites W3080330126 @default.
- W4387303122 cites W3090528971 @default.
- W4387303122 cites W3090547860 @default.
- W4387303122 cites W3128196514 @default.
- W4387303122 cites W3133666622 @default.
- W4387303122 cites W3135555994 @default.
- W4387303122 cites W3138659144 @default.
- W4387303122 cites W3146366485 @default.
- W4387303122 cites W3156460835 @default.
- W4387303122 cites W3195893246 @default.
- W4387303122 cites W3203696868 @default.
- W4387303122 cites W3204226455 @default.
- W4387303122 cites W3212190981 @default.
- W4387303122 cites W4210687984 @default.
- W4387303122 cites W4213425039 @default.
- W4387303122 cites W4226213199 @default.
- W4387303122 cites W4288064704 @default.
- W4387303122 cites W4293564153 @default.
- W4387303122 cites W4311496230 @default.
- W4387303122 cites W4320473914 @default.
- W4387303122 doi "https://doi.org/10.1016/j.physa.2023.129275" @default.
- W4387303122 hasPublicationYear "2023" @default.
- W4387303122 type Work @default.
- W4387303122 citedByCount "0" @default.
- W4387303122 crossrefType "journal-article" @default.
- W4387303122 hasAuthorship W4387303122A5030821637 @default.
- W4387303122 hasAuthorship W4387303122A5057916132 @default.
- W4387303122 hasAuthorship W4387303122A5061907283 @default.
- W4387303122 hasAuthorship W4387303122A5074915391 @default.
- W4387303122 hasAuthorship W4387303122A5092993366 @default.
- W4387303122 hasBestOaLocation W43873031221 @default.
- W4387303122 hasConcept C103402496 @default.
- W4387303122 hasConcept C105795698 @default.
- W4387303122 hasConcept C107673813 @default.
- W4387303122 hasConcept C114614502 @default.
- W4387303122 hasConcept C119857082 @default.
- W4387303122 hasConcept C121332964 @default.
- W4387303122 hasConcept C124101348 @default.
- W4387303122 hasConcept C1276947 @default.
- W4387303122 hasConcept C13662910 @default.
- W4387303122 hasConcept C14036430 @default.
- W4387303122 hasConcept C154945302 @default.
- W4387303122 hasConcept C163258240 @default.
- W4387303122 hasConcept C205167067 @default.
- W4387303122 hasConcept C2778067643 @default.
- W4387303122 hasConcept C33724603 @default.
- W4387303122 hasConcept C33923547 @default.
- W4387303122 hasConcept C41008148 @default.
- W4387303122 hasConcept C43214815 @default.
- W4387303122 hasConcept C44249647 @default.
- W4387303122 hasConcept C62520636 @default.
- W4387303122 hasConcept C78458016 @default.
- W4387303122 hasConcept C86803240 @default.
- W4387303122 hasConceptScore W4387303122C103402496 @default.
- W4387303122 hasConceptScore W4387303122C105795698 @default.
- W4387303122 hasConceptScore W4387303122C107673813 @default.
- W4387303122 hasConceptScore W4387303122C114614502 @default.
- W4387303122 hasConceptScore W4387303122C119857082 @default.
- W4387303122 hasConceptScore W4387303122C121332964 @default.
- W4387303122 hasConceptScore W4387303122C124101348 @default.
- W4387303122 hasConceptScore W4387303122C1276947 @default.
- W4387303122 hasConceptScore W4387303122C13662910 @default.
- W4387303122 hasConceptScore W4387303122C14036430 @default.
- W4387303122 hasConceptScore W4387303122C154945302 @default.
- W4387303122 hasConceptScore W4387303122C163258240 @default.
- W4387303122 hasConceptScore W4387303122C205167067 @default.
- W4387303122 hasConceptScore W4387303122C2778067643 @default.
- W4387303122 hasConceptScore W4387303122C33724603 @default.
- W4387303122 hasConceptScore W4387303122C33923547 @default.
- W4387303122 hasConceptScore W4387303122C41008148 @default.