Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387303345> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4387303345 endingPage "15" @default.
- W4387303345 startingPage "1" @default.
- W4387303345 abstract "Mineral exploration is essential to ensure a sustainable supply of raw materials for modern living and the transition to green. It implies a series of expensive operations that aim to identify areas with natural mineral concentration in the crust of the Earth. The rapid advances in artificial intelligence and remote sensing techniques can help in significantly reducing the cost of these operations. Here, we produce a robust intelligent mineral exploration model that can fingerprint potential locations of porphyry deposits, which are the world's most important source of copper and molybdenum and major source of gold, silver, and tin. We present a deep learning pipeline for assessing multispectral imagery from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with the objective of identifying hydrothermal alterations. Our approach leverages a Convolutional Neural Network (ConvNet) to analyze the high-resolution images, overcoming computational challenges through a patch-based strategy that involves an overlapping window for partitioning the images into fixed-size patches. Through the utilization of manually labeled patches for image classification and identification of hydrothermal alteration areas, our results demonstrate the remarkable ability of ConvNet to accurately detect hydrothermal alterations. The technique is adaptable for other ore deposit models and satellite imagery types, providing a revolution in satellite image interpretation and mineral exploration." @default.
- W4387303345 created "2023-10-04" @default.
- W4387303345 creator A5012776735 @default.
- W4387303345 creator A5016157034 @default.
- W4387303345 creator A5029062780 @default.
- W4387303345 creator A5042318938 @default.
- W4387303345 date "2023-01-01" @default.
- W4387303345 modified "2023-10-04" @default.
- W4387303345 title "From Pixels to Deposits: Porphyry Mineralisation With Multispectral Convolutional Neural Networks" @default.
- W4387303345 doi "https://doi.org/10.1109/jstars.2023.3321714" @default.
- W4387303345 hasPublicationYear "2023" @default.
- W4387303345 type Work @default.
- W4387303345 citedByCount "0" @default.
- W4387303345 crossrefType "journal-article" @default.
- W4387303345 hasAuthorship W4387303345A5012776735 @default.
- W4387303345 hasAuthorship W4387303345A5016157034 @default.
- W4387303345 hasAuthorship W4387303345A5029062780 @default.
- W4387303345 hasAuthorship W4387303345A5042318938 @default.
- W4387303345 hasBestOaLocation W43873033451 @default.
- W4387303345 hasConcept C127313418 @default.
- W4387303345 hasConcept C13772937 @default.
- W4387303345 hasConcept C154945302 @default.
- W4387303345 hasConcept C156622251 @default.
- W4387303345 hasConcept C160633673 @default.
- W4387303345 hasConcept C165205528 @default.
- W4387303345 hasConcept C173163844 @default.
- W4387303345 hasConcept C17409809 @default.
- W4387303345 hasConcept C179319051 @default.
- W4387303345 hasConcept C181843262 @default.
- W4387303345 hasConcept C2776152364 @default.
- W4387303345 hasConcept C41008148 @default.
- W4387303345 hasConcept C62649853 @default.
- W4387303345 hasConcept C66264921 @default.
- W4387303345 hasConcept C81363708 @default.
- W4387303345 hasConceptScore W4387303345C127313418 @default.
- W4387303345 hasConceptScore W4387303345C13772937 @default.
- W4387303345 hasConceptScore W4387303345C154945302 @default.
- W4387303345 hasConceptScore W4387303345C156622251 @default.
- W4387303345 hasConceptScore W4387303345C160633673 @default.
- W4387303345 hasConceptScore W4387303345C165205528 @default.
- W4387303345 hasConceptScore W4387303345C173163844 @default.
- W4387303345 hasConceptScore W4387303345C17409809 @default.
- W4387303345 hasConceptScore W4387303345C179319051 @default.
- W4387303345 hasConceptScore W4387303345C181843262 @default.
- W4387303345 hasConceptScore W4387303345C2776152364 @default.
- W4387303345 hasConceptScore W4387303345C41008148 @default.
- W4387303345 hasConceptScore W4387303345C62649853 @default.
- W4387303345 hasConceptScore W4387303345C66264921 @default.
- W4387303345 hasConceptScore W4387303345C81363708 @default.
- W4387303345 hasLocation W43873033451 @default.
- W4387303345 hasOpenAccess W4387303345 @default.
- W4387303345 hasPrimaryLocation W43873033451 @default.
- W4387303345 hasRelatedWork W2010486304 @default.
- W4387303345 hasRelatedWork W2091110001 @default.
- W4387303345 hasRelatedWork W2097443272 @default.
- W4387303345 hasRelatedWork W2125771399 @default.
- W4387303345 hasRelatedWork W2138205097 @default.
- W4387303345 hasRelatedWork W2141812250 @default.
- W4387303345 hasRelatedWork W2792685313 @default.
- W4387303345 hasRelatedWork W4220885573 @default.
- W4387303345 hasRelatedWork W4300248556 @default.
- W4387303345 hasRelatedWork W2106509643 @default.
- W4387303345 isParatext "false" @default.
- W4387303345 isRetracted "false" @default.
- W4387303345 workType "article" @default.