Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387306276> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4387306276 endingPage "195" @default.
- W4387306276 startingPage "195" @default.
- W4387306276 abstract "Cervical cancer poses a significant global health burden, affecting women worldwide. Timely and accurate detection is crucial for effective treatment and improved patient outcomes. The Pap smear test has long been a standard cytology screening method, enabling early cancer diagnosis. However, to enhance quantitative analysis and refine diagnostic capabilities, precise segmentation of the cervical cytoplasm and nucleus using deep learning techniques holds immense promise. This research focuses on addressing the primary challenge of achieving accurate segmentation in the presence of noisy data commonly encountered in Pap smear images. Poisson noise, a prevalent type of noise, corrupts these images, impairing the precise delineation of the cytoplasm and nucleus. Consequently, segmentation boundaries become indistinct, leading to compromised overall accuracy. To overcome these limitations, the utilization of U-Net, a deep learning architecture specifically designed for automatic segmentation, has been proposed. This approach aims to mitigate the adverse effects of Poisson noise on the digitized Pap smear slides. The evaluation of the proposed methodology involved a dataset of 110 Pap smear slides. The experimental results demonstrate that the proposed approach successfully achieves precise segmentation of the nucleus and cytoplasm in noise-free images. By preserving the boundaries of both cellular components, the method facilitates accurate feature extraction, thus contributing to improved diagnostic capabilities. Comparative analysis between noisy and noise-free images reveals the superiority of the presented approach in terms of segmentation accuracy, as measured by various metrics, including the Dice coefficient, specificity, sensitivity, and intersection over union (IoU). The findings of this study underline the potential of deep-learning-based segmentation techniques to enhance cervical cancer diagnosis and pave the way for improved quantitative analysis in this critical field of women’s health." @default.
- W4387306276 created "2023-10-04" @default.
- W4387306276 creator A5002402218 @default.
- W4387306276 creator A5059261226 @default.
- W4387306276 creator A5061976035 @default.
- W4387306276 creator A5089271238 @default.
- W4387306276 date "2023-10-03" @default.
- W4387306276 modified "2023-10-05" @default.
- W4387306276 title "A Robust Deep Learning Approach for Accurate Segmentation of Cytoplasm and Nucleus in Noisy Pap Smear Images" @default.
- W4387306276 cites W1582640985 @default.
- W4387306276 cites W2158078451 @default.
- W4387306276 cites W2280885068 @default.
- W4387306276 cites W2294157112 @default.
- W4387306276 cites W2944619637 @default.
- W4387306276 cites W2946466522 @default.
- W4387306276 cites W2947263797 @default.
- W4387306276 cites W2948771356 @default.
- W4387306276 cites W2962405678 @default.
- W4387306276 cites W2962711591 @default.
- W4387306276 cites W2965248445 @default.
- W4387306276 cites W2969980243 @default.
- W4387306276 cites W2991154765 @default.
- W4387306276 cites W3014754116 @default.
- W4387306276 cites W3033728548 @default.
- W4387306276 cites W3036614121 @default.
- W4387306276 cites W3042788351 @default.
- W4387306276 cites W3043754826 @default.
- W4387306276 cites W3045506901 @default.
- W4387306276 cites W3096947210 @default.
- W4387306276 cites W3130039502 @default.
- W4387306276 cites W3133865782 @default.
- W4387306276 cites W3158824596 @default.
- W4387306276 cites W3193266809 @default.
- W4387306276 cites W3207526740 @default.
- W4387306276 cites W4206693420 @default.
- W4387306276 cites W4223598164 @default.
- W4387306276 cites W4225252372 @default.
- W4387306276 cites W4239289803 @default.
- W4387306276 cites W4283160212 @default.
- W4387306276 cites W4322487511 @default.
- W4387306276 cites W4367724776 @default.
- W4387306276 doi "https://doi.org/10.3390/computation11100195" @default.
- W4387306276 hasPublicationYear "2023" @default.
- W4387306276 type Work @default.
- W4387306276 citedByCount "0" @default.
- W4387306276 crossrefType "journal-article" @default.
- W4387306276 hasAuthorship W4387306276A5002402218 @default.
- W4387306276 hasAuthorship W4387306276A5059261226 @default.
- W4387306276 hasAuthorship W4387306276A5061976035 @default.
- W4387306276 hasAuthorship W4387306276A5089271238 @default.
- W4387306276 hasBestOaLocation W43873062761 @default.
- W4387306276 hasConcept C108583219 @default.
- W4387306276 hasConcept C115961682 @default.
- W4387306276 hasConcept C121608353 @default.
- W4387306276 hasConcept C124504099 @default.
- W4387306276 hasConcept C126322002 @default.
- W4387306276 hasConcept C153180895 @default.
- W4387306276 hasConcept C154945302 @default.
- W4387306276 hasConcept C163892561 @default.
- W4387306276 hasConcept C2778220009 @default.
- W4387306276 hasConcept C31972630 @default.
- W4387306276 hasConcept C41008148 @default.
- W4387306276 hasConcept C71924100 @default.
- W4387306276 hasConcept C89600930 @default.
- W4387306276 hasConcept C99498987 @default.
- W4387306276 hasConceptScore W4387306276C108583219 @default.
- W4387306276 hasConceptScore W4387306276C115961682 @default.
- W4387306276 hasConceptScore W4387306276C121608353 @default.
- W4387306276 hasConceptScore W4387306276C124504099 @default.
- W4387306276 hasConceptScore W4387306276C126322002 @default.
- W4387306276 hasConceptScore W4387306276C153180895 @default.
- W4387306276 hasConceptScore W4387306276C154945302 @default.
- W4387306276 hasConceptScore W4387306276C163892561 @default.
- W4387306276 hasConceptScore W4387306276C2778220009 @default.
- W4387306276 hasConceptScore W4387306276C31972630 @default.
- W4387306276 hasConceptScore W4387306276C41008148 @default.
- W4387306276 hasConceptScore W4387306276C71924100 @default.
- W4387306276 hasConceptScore W4387306276C89600930 @default.
- W4387306276 hasConceptScore W4387306276C99498987 @default.
- W4387306276 hasIssue "10" @default.
- W4387306276 hasLocation W43873062761 @default.
- W4387306276 hasOpenAccess W4387306276 @default.
- W4387306276 hasPrimaryLocation W43873062761 @default.
- W4387306276 hasRelatedWork W1669643531 @default.
- W4387306276 hasRelatedWork W1982826852 @default.
- W4387306276 hasRelatedWork W2005437358 @default.
- W4387306276 hasRelatedWork W2008656436 @default.
- W4387306276 hasRelatedWork W2023558673 @default.
- W4387306276 hasRelatedWork W2110230079 @default.
- W4387306276 hasRelatedWork W2134924024 @default.
- W4387306276 hasRelatedWork W2517104666 @default.
- W4387306276 hasRelatedWork W2790662084 @default.
- W4387306276 hasRelatedWork W4285827401 @default.
- W4387306276 hasVolume "11" @default.
- W4387306276 isParatext "false" @default.
- W4387306276 isRetracted "false" @default.
- W4387306276 workType "article" @default.