Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387310035> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4387310035 abstract "Soft Sensing Influent Concentrations with Airflow Rates by Digital Twins: A Real Case Study from Oldham WwTWAbstractWith the abundance of data availability across treatment facilities, artificial intelligence is paving the way for unique optimization opportunities. The examples provided encompass the Agua Nueva Water Reclamation Facility (WRF), which concentrates on minimizing aeration energy expenses and enhancing nutrient management, as well as the Wilmington WWTF, emphasizing the optimization of disinfection chemicals. Several artificial intelligence (AI) and Bayesian modeling frameworks were developed with both sites using AI algorithms with mean absolute percentage errors < 10% for both forecasting of future conditions at a facility, as well as causal inferencing for predicting water quality. Post deployment, both sites are regularly achieving anywhere from 10-30% savings in energy or chemical usage. These case-study demonstrates significant progress in the successful implementation of AI at a treatment facility and the ability to aid in the empowerment of treatment plant operators while improving efficiencies in wastewater treatment.United Utilities initiated a case study using already available data to predict the real-time influent concentrations to optimize chemical addition for phosphorus removal without installing physical sensors. This paper proposes a novel soft sensor mechanism that successfully estimates the high-resolution influent profiles with a digital twin model plus regular measurements (e. g. airflows, flows and lab measurements). The soft sensor overcomes the lack of dynamic profiles in DT applications.SpeakerYang, ChengPresentation time14:00:0014:20:00Session time13:30:0015:00:00SessionPlanning and Process Improvement Case Studies: Winning with TwinningSession locationRoom S505b - Level 5TopicAdvanced Level, Energy Production, Conservation, and Management, Municipal Wastewater Treatment Design, Nutrients, Research and InnovationTopicAdvanced Level, Energy Production, Conservation, and Management, Municipal Wastewater Treatment Design, Nutrients, Research and InnovationAuthor(s)Yang, ChengAuthor(s)C. Yang <sup>1</sup>; B. Johnson <sup>2 </sup>; J. Registe <sup>3</sup>; T. Johnson <sup>4</sup>; A. Rahman <sup>5</sup>; J. Kenyon <sup>6</sup>; C. Yang <sup>1</sup>;Author affiliation(s)Jacobs <sup>1</sup>; Jacobs <sup>2 </sup>; Jacobs <sup>3</sup>; Jacobs <sup>4</sup>; <sup>5</sup>; <sup>6</sup>; Jacobs <sup>1</sup>;SourceProceedings of the Water Environment FederationDocument typeConference PaperPublisherWater Environment FederationPrint publication date Oct 2023DOI10.2175/193864718825159227Volume / Issue Content sourceWEFTECCopyright2023Word count18" @default.
- W4387310035 created "2023-10-04" @default.
- W4387310035 creator A5045141254 @default.
- W4387310035 creator A5056675805 @default.
- W4387310035 creator A5067098253 @default.
- W4387310035 creator A5089820258 @default.
- W4387310035 date "2023-10-04" @default.
- W4387310035 modified "2023-10-05" @default.
- W4387310035 title "Soft Sensing Influent Concentrations with Airflow Rates by Digital Twins: A Real Case Study from Oldham WwTW" @default.
- W4387310035 doi "https://doi.org/10.2175/193864718825159227" @default.
- W4387310035 hasPublicationYear "2023" @default.
- W4387310035 type Work @default.
- W4387310035 citedByCount "0" @default.
- W4387310035 crossrefType "proceedings-article" @default.
- W4387310035 hasAuthorship W4387310035A5045141254 @default.
- W4387310035 hasAuthorship W4387310035A5056675805 @default.
- W4387310035 hasAuthorship W4387310035A5067098253 @default.
- W4387310035 hasAuthorship W4387310035A5089820258 @default.
- W4387310035 hasConcept C111919701 @default.
- W4387310035 hasConcept C115575686 @default.
- W4387310035 hasConcept C116067010 @default.
- W4387310035 hasConcept C127413603 @default.
- W4387310035 hasConcept C21880701 @default.
- W4387310035 hasConcept C39432304 @default.
- W4387310035 hasConcept C41008148 @default.
- W4387310035 hasConcept C548081761 @default.
- W4387310035 hasConcept C78519656 @default.
- W4387310035 hasConcept C79403827 @default.
- W4387310035 hasConcept C86922832 @default.
- W4387310035 hasConcept C98045186 @default.
- W4387310035 hasConceptScore W4387310035C111919701 @default.
- W4387310035 hasConceptScore W4387310035C115575686 @default.
- W4387310035 hasConceptScore W4387310035C116067010 @default.
- W4387310035 hasConceptScore W4387310035C127413603 @default.
- W4387310035 hasConceptScore W4387310035C21880701 @default.
- W4387310035 hasConceptScore W4387310035C39432304 @default.
- W4387310035 hasConceptScore W4387310035C41008148 @default.
- W4387310035 hasConceptScore W4387310035C548081761 @default.
- W4387310035 hasConceptScore W4387310035C78519656 @default.
- W4387310035 hasConceptScore W4387310035C79403827 @default.
- W4387310035 hasConceptScore W4387310035C86922832 @default.
- W4387310035 hasConceptScore W4387310035C98045186 @default.
- W4387310035 hasLocation W43873100351 @default.
- W4387310035 hasOpenAccess W4387310035 @default.
- W4387310035 hasPrimaryLocation W43873100351 @default.
- W4387310035 hasRelatedWork W1975838576 @default.
- W4387310035 hasRelatedWork W1981707972 @default.
- W4387310035 hasRelatedWork W1991316233 @default.
- W4387310035 hasRelatedWork W2025003988 @default.
- W4387310035 hasRelatedWork W2079708164 @default.
- W4387310035 hasRelatedWork W2290464134 @default.
- W4387310035 hasRelatedWork W2317126258 @default.
- W4387310035 hasRelatedWork W2604329139 @default.
- W4387310035 hasRelatedWork W2899084033 @default.
- W4387310035 hasRelatedWork W2181316607 @default.
- W4387310035 isParatext "false" @default.
- W4387310035 isRetracted "false" @default.
- W4387310035 workType "article" @default.