Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387312302> ?p ?o ?g. }
- W4387312302 abstract "With the development of deep learning, almost all single-domain proteins can be predicted at experimental resolution. However, the structure prediction of multi-domain proteins remains a challenge. Achieving end-to-end protein domain assembly and further improving the accuracy of the full-chain modeling by accurately predicting inter-domain orientation while improving the assembly efficiency will provide significant insights into structure-based drug discovery. In this work, we propose an End-to-End Domain Assembly method based on deep learning, named E2EDA. We first develop RMNet, an EfficientNetV2-based deep learning model that fuses multiple features using an attention mechanism to predict inter-domain rigid motion. Then, the predicted rigid motions are transformed into inter-domain spatial transformations to directly assemble the full-chain model. Finally, the scoring strategy RMscore is designed to select the best model from multiple assembled models. The experimental results show that the average TM-score of the model assembled by E2EDA on the benchmark set (282) is 0.827, which is better than those of other domain assembly methods SADA (0.792) and DEMO (0.730). Meanwhile, on our constructed multi-domain data set from AlphaFold DB, the model reassembled by E2EDA is 7.0% higher in TM-score compared to the full-chain model predicted by AlphaFold2, indicating that E2EDA can capture more accurate inter-domain orientations to improve the quality of the model predicted by AlphaFold2. Furthermore, compared to SADA and AlphaFold2, E2EDA reduced the average runtime on the benchmark by 64.7% and 19.2%, respectively, indicating that E2EDA can significantly improve assembly efficiency through an end-to-end approach. The online server is available at http://zhanglab-bioinf.com/E2EDA." @default.
- W4387312302 created "2023-10-04" @default.
- W4387312302 creator A5020971640 @default.
- W4387312302 creator A5031462521 @default.
- W4387312302 creator A5074300225 @default.
- W4387312302 date "2023-10-03" @default.
- W4387312302 modified "2023-10-14" @default.
- W4387312302 title "E2EDA: Protein Domain Assembly Based on End-to-End Deep Learning" @default.
- W4387312302 cites W1981264193 @default.
- W4387312302 cites W2144112190 @default.
- W4387312302 cites W2147805410 @default.
- W4387312302 cites W2151581834 @default.
- W4387312302 cites W2156628505 @default.
- W4387312302 cites W2166701319 @default.
- W4387312302 cites W2170449429 @default.
- W4387312302 cites W2170471837 @default.
- W4387312302 cites W2170747616 @default.
- W4387312302 cites W2179537696 @default.
- W4387312302 cites W2406171343 @default.
- W4387312302 cites W253094825 @default.
- W4387312302 cites W2557595285 @default.
- W4387312302 cites W2559007573 @default.
- W4387312302 cites W2620998958 @default.
- W4387312302 cites W2960589734 @default.
- W4387312302 cites W2963436022 @default.
- W4387312302 cites W2971003495 @default.
- W4387312302 cites W2972411752 @default.
- W4387312302 cites W2980272550 @default.
- W4387312302 cites W2987090428 @default.
- W4387312302 cites W2997234557 @default.
- W4387312302 cites W3146944767 @default.
- W4387312302 cites W3165545667 @default.
- W4387312302 cites W3173197060 @default.
- W4387312302 cites W3177500196 @default.
- W4387312302 cites W3177828909 @default.
- W4387312302 cites W3178212622 @default.
- W4387312302 cites W3209492740 @default.
- W4387312302 cites W3211795435 @default.
- W4387312302 cites W4205827692 @default.
- W4387312302 cites W4211238482 @default.
- W4387312302 cites W4291237297 @default.
- W4387312302 cites W4309452766 @default.
- W4387312302 cites W4310951880 @default.
- W4387312302 cites W4323075934 @default.
- W4387312302 cites W4327550249 @default.
- W4387312302 cites W4386065518 @default.
- W4387312302 doi "https://doi.org/10.1021/acs.jcim.3c01387" @default.
- W4387312302 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37788318" @default.
- W4387312302 hasPublicationYear "2023" @default.
- W4387312302 type Work @default.
- W4387312302 citedByCount "0" @default.
- W4387312302 crossrefType "journal-article" @default.
- W4387312302 hasAuthorship W4387312302A5020971640 @default.
- W4387312302 hasAuthorship W4387312302A5031462521 @default.
- W4387312302 hasAuthorship W4387312302A5074300225 @default.
- W4387312302 hasConcept C108583219 @default.
- W4387312302 hasConcept C11413529 @default.
- W4387312302 hasConcept C119857082 @default.
- W4387312302 hasConcept C124101348 @default.
- W4387312302 hasConcept C13280743 @default.
- W4387312302 hasConcept C134306372 @default.
- W4387312302 hasConcept C153180895 @default.
- W4387312302 hasConcept C154945302 @default.
- W4387312302 hasConcept C16345878 @default.
- W4387312302 hasConcept C177264268 @default.
- W4387312302 hasConcept C185798385 @default.
- W4387312302 hasConcept C199360897 @default.
- W4387312302 hasConcept C205649164 @default.
- W4387312302 hasConcept C2524010 @default.
- W4387312302 hasConcept C33923547 @default.
- W4387312302 hasConcept C36503486 @default.
- W4387312302 hasConcept C41008148 @default.
- W4387312302 hasConcept C74296488 @default.
- W4387312302 hasConceptScore W4387312302C108583219 @default.
- W4387312302 hasConceptScore W4387312302C11413529 @default.
- W4387312302 hasConceptScore W4387312302C119857082 @default.
- W4387312302 hasConceptScore W4387312302C124101348 @default.
- W4387312302 hasConceptScore W4387312302C13280743 @default.
- W4387312302 hasConceptScore W4387312302C134306372 @default.
- W4387312302 hasConceptScore W4387312302C153180895 @default.
- W4387312302 hasConceptScore W4387312302C154945302 @default.
- W4387312302 hasConceptScore W4387312302C16345878 @default.
- W4387312302 hasConceptScore W4387312302C177264268 @default.
- W4387312302 hasConceptScore W4387312302C185798385 @default.
- W4387312302 hasConceptScore W4387312302C199360897 @default.
- W4387312302 hasConceptScore W4387312302C205649164 @default.
- W4387312302 hasConceptScore W4387312302C2524010 @default.
- W4387312302 hasConceptScore W4387312302C33923547 @default.
- W4387312302 hasConceptScore W4387312302C36503486 @default.
- W4387312302 hasConceptScore W4387312302C41008148 @default.
- W4387312302 hasConceptScore W4387312302C74296488 @default.
- W4387312302 hasFunder F4320321001 @default.
- W4387312302 hasFunder F4320335777 @default.
- W4387312302 hasFunder F4320338464 @default.
- W4387312302 hasLocation W43873123021 @default.
- W4387312302 hasLocation W43873123022 @default.
- W4387312302 hasOpenAccess W4387312302 @default.
- W4387312302 hasPrimaryLocation W43873123021 @default.
- W4387312302 hasRelatedWork W2795261237 @default.
- W4387312302 hasRelatedWork W3014300295 @default.