Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387319099> ?p ?o ?g. }
- W4387319099 endingPage "426" @default.
- W4387319099 startingPage "395" @default.
- W4387319099 abstract "It has been widely recognized that structural materials are better designed simultaneously with the target component so that their properties can be tailored to the service loading conditions to meet component performance. This concurrent approach helps avoid over-strengthening the materials and components through unnecessary reinforcements, leading to lightweight, low-cost, yet durable designs. Recent advances in Integrated Computational Materials Engineering (ICME) have enabled researchers and engineers to predict a structure’s performance using its geometry, material (e.g. constituent selection and volume fraction), and processing conditions; however, two challenges arise when existing design optimization algorithms are applied to ICME: (1) The design problem involves mixed-type variables, including continuous, ordinal (e.g. low or high for material processing temperatures), and categorical variables (e.g. steel or plastic for type of materials), and (2) Evaluation of design performance considering manufacturing-induced local material microstructure evolution is computationally expensive. In this chapter, we present a machine-learning-based method to conquer both challenges through constrained Bayesian optimization (BO) with latent-variable Gaussian process (LVGP) modeling. LVGP allows Gaussian process (GP) regression with mixed-variables by mapping all non-continuous variables to a continuous latent space. It is integrated with BO, a method using (LV)GP’s predicted responses and prediction uncertainty to guide the optimal design search, to explore and exploit the disjoint and non-differentiable design spaces spanned by the non-continuous variables. BO is also shown to be highly efficient for optimization of expensive black-box functions. We demonstrate our approach using two design examples, thin-walled hat section components and short-fiber reinforced polymer (SFRP) composites. The former illustrates concurrent structure and material design while the latter focuses on concurrent material and processing optimization. In both examples, we first establish their respective ICME workflows, i.e. the integrated part-scale manufacturing processes and structural performance simulations coupled with material-scale microstructure and behavior models. Then, we show the benefits of using LVGP as a mixed-variable surrogate model to emulate the physics-based simulations, and the performance of constrained BO (CBO) based on LVGP, particularly on how the search is conducted among different levels of categorical variables. Results indicate that the LVGP-CBO framework can effectively design multi-material structural components for ICME through concurrent material, product, and process optimization." @default.
- W4387319099 created "2023-10-04" @default.
- W4387319099 creator A5027534291 @default.
- W4387319099 creator A5030005269 @default.
- W4387319099 creator A5043381224 @default.
- W4387319099 creator A5048409991 @default.
- W4387319099 creator A5064842058 @default.
- W4387319099 creator A5073462467 @default.
- W4387319099 creator A5079464004 @default.
- W4387319099 creator A5089249170 @default.
- W4387319099 date "2023-01-01" @default.
- W4387319099 modified "2023-10-05" @default.
- W4387319099 title "Mixed-Variable Concurrent Material, Geometry, and Process Design in Integrated Computational Materials Engineering" @default.
- W4387319099 cites W1479584399 @default.
- W4387319099 cites W1502922572 @default.
- W4387319099 cites W1586588101 @default.
- W4387319099 cites W1977608468 @default.
- W4387319099 cites W1981270896 @default.
- W4387319099 cites W1992401172 @default.
- W4387319099 cites W2001842014 @default.
- W4387319099 cites W2008499862 @default.
- W4387319099 cites W2047512129 @default.
- W4387319099 cites W2078236179 @default.
- W4387319099 cites W2091183751 @default.
- W4387319099 cites W2094009285 @default.
- W4387319099 cites W2101589741 @default.
- W4387319099 cites W2145475762 @default.
- W4387319099 cites W2155162055 @default.
- W4387319099 cites W2156614992 @default.
- W4387319099 cites W2162683494 @default.
- W4387319099 cites W2168350331 @default.
- W4387319099 cites W2524575205 @default.
- W4387319099 cites W2534940151 @default.
- W4387319099 cites W2589863058 @default.
- W4387319099 cites W2591107831 @default.
- W4387319099 cites W2765865210 @default.
- W4387319099 cites W2773921174 @default.
- W4387319099 cites W2779618392 @default.
- W4387319099 cites W2797155318 @default.
- W4387319099 cites W2801191508 @default.
- W4387319099 cites W2801850167 @default.
- W4387319099 cites W2963384660 @default.
- W4387319099 cites W2990759553 @default.
- W4387319099 cites W3004323918 @default.
- W4387319099 cites W3011445295 @default.
- W4387319099 cites W3034540853 @default.
- W4387319099 cites W3038242895 @default.
- W4387319099 cites W3147291860 @default.
- W4387319099 cites W3158427160 @default.
- W4387319099 cites W4289236186 @default.
- W4387319099 cites W4293775970 @default.
- W4387319099 cites W4386129632 @default.
- W4387319099 doi "https://doi.org/10.1007/978-3-031-36644-4_11" @default.
- W4387319099 hasPublicationYear "2023" @default.
- W4387319099 type Work @default.
- W4387319099 citedByCount "0" @default.
- W4387319099 crossrefType "book-chapter" @default.
- W4387319099 hasAuthorship W4387319099A5027534291 @default.
- W4387319099 hasAuthorship W4387319099A5030005269 @default.
- W4387319099 hasAuthorship W4387319099A5043381224 @default.
- W4387319099 hasAuthorship W4387319099A5048409991 @default.
- W4387319099 hasAuthorship W4387319099A5064842058 @default.
- W4387319099 hasAuthorship W4387319099A5073462467 @default.
- W4387319099 hasAuthorship W4387319099A5079464004 @default.
- W4387319099 hasAuthorship W4387319099A5089249170 @default.
- W4387319099 hasConcept C11413529 @default.
- W4387319099 hasConcept C119857082 @default.
- W4387319099 hasConcept C121332964 @default.
- W4387319099 hasConcept C122357587 @default.
- W4387319099 hasConcept C126255220 @default.
- W4387319099 hasConcept C127413603 @default.
- W4387319099 hasConcept C137836250 @default.
- W4387319099 hasConcept C163716315 @default.
- W4387319099 hasConcept C168167062 @default.
- W4387319099 hasConcept C2778049539 @default.
- W4387319099 hasConcept C2983394010 @default.
- W4387319099 hasConcept C33923547 @default.
- W4387319099 hasConcept C34972735 @default.
- W4387319099 hasConcept C41008148 @default.
- W4387319099 hasConcept C5274069 @default.
- W4387319099 hasConcept C61326573 @default.
- W4387319099 hasConcept C62520636 @default.
- W4387319099 hasConcept C78519656 @default.
- W4387319099 hasConcept C81692654 @default.
- W4387319099 hasConcept C92995354 @default.
- W4387319099 hasConcept C97355855 @default.
- W4387319099 hasConceptScore W4387319099C11413529 @default.
- W4387319099 hasConceptScore W4387319099C119857082 @default.
- W4387319099 hasConceptScore W4387319099C121332964 @default.
- W4387319099 hasConceptScore W4387319099C122357587 @default.
- W4387319099 hasConceptScore W4387319099C126255220 @default.
- W4387319099 hasConceptScore W4387319099C127413603 @default.
- W4387319099 hasConceptScore W4387319099C137836250 @default.
- W4387319099 hasConceptScore W4387319099C163716315 @default.
- W4387319099 hasConceptScore W4387319099C168167062 @default.
- W4387319099 hasConceptScore W4387319099C2778049539 @default.
- W4387319099 hasConceptScore W4387319099C2983394010 @default.
- W4387319099 hasConceptScore W4387319099C33923547 @default.