Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387321504> ?p ?o ?g. }
- W4387321504 endingPage "114090" @default.
- W4387321504 startingPage "114090" @default.
- W4387321504 abstract "In this paper, we study data-driven localized wave solutions and parameter discovery in the massive Thirring (MT) model via the deep learning in the framework of physics-informed neural networks (PINNs) algorithm. Abundant data-driven solutions including soliton of bright/dark type, breather and rogue wave are simulated accurately and analyzed contrastively with relative and absolute errors. For higher-order localized wave solutions, we employ the extended PINNs (XPINNs) with domain decomposition to capture the complete pictures of dynamic behaviors such as soliton collisions, breather oscillations and rogue-wave superposition. In particular, we modify the interface line in domain decomposition of XPINNs into a small interface zone and introduce the pseudo initial, residual and gradient conditions as interface conditions linked adjacently with individual neural networks. Then this modified approach is applied successfully to various solutions ranging from bright-bright soliton, dark-dark soliton, dark-antidark soliton, general breather, Kuznetsov-Ma breather and second-order rogue wave. Experimental results show that this improved version of XPINNs reduce the complexity of computation with faster convergence rate and keep the quality of learned solutions with smoother stitching performance as well. For the inverse problems, the unknown coefficient parameters of linear and nonlinear terms in the MT model are identified accurately with and without noise by using the classical PINNs algorithm." @default.
- W4387321504 created "2023-10-04" @default.
- W4387321504 creator A5022647001 @default.
- W4387321504 creator A5045876009 @default.
- W4387321504 creator A5072375928 @default.
- W4387321504 creator A5089190353 @default.
- W4387321504 date "2023-11-01" @default.
- W4387321504 modified "2023-10-15" @default.
- W4387321504 title "Data-driven localized waves and parameter discovery in the massive Thirring model via extended physics-informed neural networks with interface zones" @default.
- W4387321504 cites W1968562831 @default.
- W4387321504 cites W1970454553 @default.
- W4387321504 cites W1973433846 @default.
- W4387321504 cites W2001527147 @default.
- W4387321504 cites W2005415466 @default.
- W4387321504 cites W2014725896 @default.
- W4387321504 cites W2019745713 @default.
- W4387321504 cites W2023192289 @default.
- W4387321504 cites W2023708107 @default.
- W4387321504 cites W2025670032 @default.
- W4387321504 cites W2026828050 @default.
- W4387321504 cites W2039283637 @default.
- W4387321504 cites W2047132046 @default.
- W4387321504 cites W2057272577 @default.
- W4387321504 cites W2072286328 @default.
- W4387321504 cites W2077402413 @default.
- W4387321504 cites W2085284359 @default.
- W4387321504 cites W2086062613 @default.
- W4387321504 cites W2086770309 @default.
- W4387321504 cites W2118343396 @default.
- W4387321504 cites W2137983211 @default.
- W4387321504 cites W2159602724 @default.
- W4387321504 cites W2160395709 @default.
- W4387321504 cites W2240955938 @default.
- W4387321504 cites W2606160557 @default.
- W4387321504 cites W2890968382 @default.
- W4387321504 cites W2899283552 @default.
- W4387321504 cites W2948551291 @default.
- W4387321504 cites W2963084548 @default.
- W4387321504 cites W2964252151 @default.
- W4387321504 cites W2969381807 @default.
- W4387321504 cites W2998366519 @default.
- W4387321504 cites W3011147100 @default.
- W4387321504 cites W3011806874 @default.
- W4387321504 cites W3014009018 @default.
- W4387321504 cites W3015865829 @default.
- W4387321504 cites W3041682155 @default.
- W4387321504 cites W3098546160 @default.
- W4387321504 cites W3106144253 @default.
- W4387321504 cites W3117301071 @default.
- W4387321504 cites W3120286796 @default.
- W4387321504 cites W3121370881 @default.
- W4387321504 cites W3163361310 @default.
- W4387321504 cites W3163993681 @default.
- W4387321504 cites W3165445341 @default.
- W4387321504 cites W3176116059 @default.
- W4387321504 cites W3177788059 @default.
- W4387321504 cites W3194203313 @default.
- W4387321504 cites W3197473870 @default.
- W4387321504 cites W3199775905 @default.
- W4387321504 cites W3203264955 @default.
- W4387321504 cites W3206859690 @default.
- W4387321504 cites W3207455116 @default.
- W4387321504 cites W3213201244 @default.
- W4387321504 cites W4200119169 @default.
- W4387321504 cites W4212988227 @default.
- W4387321504 cites W4213444041 @default.
- W4387321504 cites W4224033936 @default.
- W4387321504 cites W4225269297 @default.
- W4387321504 cites W4281259677 @default.
- W4387321504 cites W4283321413 @default.
- W4387321504 cites W4284974357 @default.
- W4387321504 cites W4288032460 @default.
- W4387321504 cites W4293740347 @default.
- W4387321504 cites W4294959391 @default.
- W4387321504 cites W4301188084 @default.
- W4387321504 cites W4306749483 @default.
- W4387321504 cites W4311428468 @default.
- W4387321504 cites W4312084884 @default.
- W4387321504 cites W4313529129 @default.
- W4387321504 cites W4319864402 @default.
- W4387321504 cites W4322759682 @default.
- W4387321504 cites W4328135948 @default.
- W4387321504 cites W4383905459 @default.
- W4387321504 cites W4386280222 @default.
- W4387321504 doi "https://doi.org/10.1016/j.chaos.2023.114090" @default.
- W4387321504 hasPublicationYear "2023" @default.
- W4387321504 type Work @default.
- W4387321504 citedByCount "0" @default.
- W4387321504 crossrefType "journal-article" @default.
- W4387321504 hasAuthorship W4387321504A5022647001 @default.
- W4387321504 hasAuthorship W4387321504A5045876009 @default.
- W4387321504 hasAuthorship W4387321504A5072375928 @default.
- W4387321504 hasAuthorship W4387321504A5089190353 @default.
- W4387321504 hasBestOaLocation W43873215041 @default.
- W4387321504 hasConcept C11413529 @default.
- W4387321504 hasConcept C121332964 @default.
- W4387321504 hasConcept C121864883 @default.
- W4387321504 hasConcept C154945302 @default.