Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387322446> ?p ?o ?g. }
- W4387322446 abstract "Acute kidney injury (AKI) can make cases of acute respiratory distress syndrome (ARDS) more complex, and the combination of the two can significantly worsen the prognosis. Our objective is to utilize machine learning (ML) techniques to construct models that can promptly identify the risk of AKI in ARDS patients.We obtained data regarding ARDS patients from the Medical Information Mart for Intensive Care III (MIMIC-III) and MIMIC-IV databases. Within the MIMIC-III dataset, we developed 11 ML prediction models. By evaluating various metrics, we visualized the importance of its features using Shapley additive explanations (SHAP). We then created a more concise model using fewer variables, and optimized it using hyperparameter optimization (HPO). The model was validated using the MIMIC-IV dataset.A total of 928 ARDS patients without AKI were included in the analysis from the MIMIC-III dataset, and among them, 179 (19.3%) developed AKI after admission to the intensive care unit (ICU). In the MIMIC-IV dataset, there were 653 ARDS patients included in the analysis, and among them, 237 (36.3%) developed AKI. A total of 43 features were used to build the model. Among all models, eXtreme gradient boosting (XGBoost) performed the best. We used the top 10 features to build a compact model with an area under the curve (AUC) of 0.850, which improved to an AUC of 0.865 after the HPO. In extra validation set, XGBoost_HPO achieved an AUC of 0.854. The accuracy, sensitivity, specificity, positive prediction value (PPV), negative prediction value (NPV), and F1 score of the XGBoost_HPO model on the test set are 0.865, 0.813, 0.877, 0.578, 0.957 and 0.675, respectively. On extra validation set, they are 0.724, 0.789, 0.688, 0.590, 0.851, and 0.675, respectively.ML algorithms, especially XGBoost, are reliable for predicting AKI in ARDS patients. The compact model maintains excellent predictive ability, and the web-based calculator improves clinical convenience. This provides valuable guidance in identifying AKI in ARDS, leading to improved patient outcomes." @default.
- W4387322446 created "2023-10-04" @default.
- W4387322446 creator A5009535551 @default.
- W4387322446 creator A5017500276 @default.
- W4387322446 creator A5024138459 @default.
- W4387322446 creator A5035085609 @default.
- W4387322446 creator A5043671078 @default.
- W4387322446 creator A5069796967 @default.
- W4387322446 creator A5076800977 @default.
- W4387322446 creator A5086221584 @default.
- W4387322446 date "2023-10-03" @default.
- W4387322446 modified "2023-10-16" @default.
- W4387322446 title "Machine learning-based prediction model of acute kidney injury in patients with acute respiratory distress syndrome" @default.
- W4387322446 cites W1803784511 @default.
- W4387322446 cites W2085863877 @default.
- W4387322446 cites W2102292950 @default.
- W4387322446 cites W2107628049 @default.
- W4387322446 cites W2141559993 @default.
- W4387322446 cites W2146846681 @default.
- W4387322446 cites W2149687213 @default.
- W4387322446 cites W2286228001 @default.
- W4387322446 cites W2396881363 @default.
- W4387322446 cites W2529108797 @default.
- W4387322446 cites W2620241325 @default.
- W4387322446 cites W2729403783 @default.
- W4387322446 cites W2772170993 @default.
- W4387322446 cites W2899678759 @default.
- W4387322446 cites W2973032093 @default.
- W4387322446 cites W3019339065 @default.
- W4387322446 cites W3111698685 @default.
- W4387322446 cites W3112229816 @default.
- W4387322446 cites W3121921387 @default.
- W4387322446 cites W3164939693 @default.
- W4387322446 cites W3215058137 @default.
- W4387322446 cites W3215970484 @default.
- W4387322446 cites W4205735962 @default.
- W4387322446 cites W4214818606 @default.
- W4387322446 cites W4224996806 @default.
- W4387322446 cites W4226024066 @default.
- W4387322446 cites W4226254352 @default.
- W4387322446 cites W4229066889 @default.
- W4387322446 cites W4280494042 @default.
- W4387322446 cites W4285020063 @default.
- W4387322446 cites W4289952424 @default.
- W4387322446 cites W4298326506 @default.
- W4387322446 cites W4307940864 @default.
- W4387322446 cites W4309503926 @default.
- W4387322446 cites W4309857239 @default.
- W4387322446 cites W4313439128 @default.
- W4387322446 cites W4313621263 @default.
- W4387322446 cites W4315436374 @default.
- W4387322446 cites W4315865756 @default.
- W4387322446 cites W4365135254 @default.
- W4387322446 cites W4367601045 @default.
- W4387322446 cites W4377043982 @default.
- W4387322446 doi "https://doi.org/10.1186/s12890-023-02663-6" @default.
- W4387322446 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37789305" @default.
- W4387322446 hasPublicationYear "2023" @default.
- W4387322446 type Work @default.
- W4387322446 citedByCount "0" @default.
- W4387322446 crossrefType "journal-article" @default.
- W4387322446 hasAuthorship W4387322446A5009535551 @default.
- W4387322446 hasAuthorship W4387322446A5017500276 @default.
- W4387322446 hasAuthorship W4387322446A5024138459 @default.
- W4387322446 hasAuthorship W4387322446A5035085609 @default.
- W4387322446 hasAuthorship W4387322446A5043671078 @default.
- W4387322446 hasAuthorship W4387322446A5069796967 @default.
- W4387322446 hasAuthorship W4387322446A5076800977 @default.
- W4387322446 hasAuthorship W4387322446A5086221584 @default.
- W4387322446 hasBestOaLocation W43873224461 @default.
- W4387322446 hasConcept C119857082 @default.
- W4387322446 hasConcept C126322002 @default.
- W4387322446 hasConcept C154945302 @default.
- W4387322446 hasConcept C177713679 @default.
- W4387322446 hasConcept C2776348555 @default.
- W4387322446 hasConcept C2776376669 @default.
- W4387322446 hasConcept C2777714996 @default.
- W4387322446 hasConcept C2780472472 @default.
- W4387322446 hasConcept C2909621147 @default.
- W4387322446 hasConcept C41008148 @default.
- W4387322446 hasConcept C71924100 @default.
- W4387322446 hasConcept C76318530 @default.
- W4387322446 hasConcept C8642999 @default.
- W4387322446 hasConceptScore W4387322446C119857082 @default.
- W4387322446 hasConceptScore W4387322446C126322002 @default.
- W4387322446 hasConceptScore W4387322446C154945302 @default.
- W4387322446 hasConceptScore W4387322446C177713679 @default.
- W4387322446 hasConceptScore W4387322446C2776348555 @default.
- W4387322446 hasConceptScore W4387322446C2776376669 @default.
- W4387322446 hasConceptScore W4387322446C2777714996 @default.
- W4387322446 hasConceptScore W4387322446C2780472472 @default.
- W4387322446 hasConceptScore W4387322446C2909621147 @default.
- W4387322446 hasConceptScore W4387322446C41008148 @default.
- W4387322446 hasConceptScore W4387322446C71924100 @default.
- W4387322446 hasConceptScore W4387322446C76318530 @default.
- W4387322446 hasConceptScore W4387322446C8642999 @default.
- W4387322446 hasFunder F4320324174 @default.
- W4387322446 hasIssue "1" @default.
- W4387322446 hasLocation W43873224461 @default.
- W4387322446 hasLocation W43873224462 @default.