Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387325066> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4387325066 abstract "Images captured in hazy and smoky environments suffer from reduced visibility, posing a challenge when monitoring infrastructures and hindering emergency services during critical situations. The proposed work investigates the use of the deep learning models to enhance the automatic, machine-based readability of gauge in smoky environments, with accurate gauge data interpretation serving as a valuable tool for first responders. The study utilizes two deep learning architectures, FFA-Net and AECR-Net, to improve the visibility of gauge images, corrupted with light up to dense haze and smoke. Since benchmark datasets of analog gauge images are unavailable, a new synthetic dataset, containing over 14,000 images, was generated using the Unreal Engine. The models were trained with an 80% train, 10% validation, and 10% test split for the haze and smoke dataset, respectively. For the synthetic haze dataset, the SSIM and PSNR metrics are about 0.98 and 43 dB, respectively, comparing well to state-of-the art results. Additionally, more robust results are retrieved from the AECR-Net, when compared to the FFA-Net. Although the results from the synthetic smoke dataset are poorer, the trained models achieve interesting results. In general, imaging in the presence of smoke are more difficult to enhance given the inhomogeneity and high density. Secondly, FFA-Net and AECR-Net are implemented to dehaze and not to desmoke images. This work shows that use of deep learning architectures can improve the quality of analog gauge images captured in smoke and haze scenes immensely. Finally, the enhanced output images can be successfully post-processed for automatic autonomous reading of gauges." @default.
- W4387325066 created "2023-10-04" @default.
- W4387325066 creator A5013363595 @default.
- W4387325066 creator A5018000869 @default.
- W4387325066 creator A5020428373 @default.
- W4387325066 creator A5092998755 @default.
- W4387325066 creator A5092998756 @default.
- W4387325066 date "2023-10-04" @default.
- W4387325066 modified "2023-10-18" @default.
- W4387325066 title "Enhancing the quality of gauge images captured in haze and smoke scenes through deep learning" @default.
- W4387325066 cites W2133665775 @default.
- W4387325066 cites W2147318913 @default.
- W4387325066 cites W2256362396 @default.
- W4387325066 cites W2508509730 @default.
- W4387325066 cites W2912493354 @default.
- W4387325066 cites W3173269149 @default.
- W4387325066 cites W3195517761 @default.
- W4387325066 cites W4212991200 @default.
- W4387325066 cites W4229572512 @default.
- W4387325066 cites W4295088326 @default.
- W4387325066 cites W4327808545 @default.
- W4387325066 doi "https://doi.org/10.1117/12.2679809" @default.
- W4387325066 hasPublicationYear "2023" @default.
- W4387325066 type Work @default.
- W4387325066 citedByCount "0" @default.
- W4387325066 crossrefType "proceedings-article" @default.
- W4387325066 hasAuthorship W4387325066A5013363595 @default.
- W4387325066 hasAuthorship W4387325066A5018000869 @default.
- W4387325066 hasAuthorship W4387325066A5020428373 @default.
- W4387325066 hasAuthorship W4387325066A5092998755 @default.
- W4387325066 hasAuthorship W4387325066A5092998756 @default.
- W4387325066 hasConcept C108583219 @default.
- W4387325066 hasConcept C119857082 @default.
- W4387325066 hasConcept C123403432 @default.
- W4387325066 hasConcept C13280743 @default.
- W4387325066 hasConcept C153294291 @default.
- W4387325066 hasConcept C154945302 @default.
- W4387325066 hasConcept C185798385 @default.
- W4387325066 hasConcept C205649164 @default.
- W4387325066 hasConcept C31972630 @default.
- W4387325066 hasConcept C41008148 @default.
- W4387325066 hasConcept C58874564 @default.
- W4387325066 hasConcept C79974267 @default.
- W4387325066 hasConceptScore W4387325066C108583219 @default.
- W4387325066 hasConceptScore W4387325066C119857082 @default.
- W4387325066 hasConceptScore W4387325066C123403432 @default.
- W4387325066 hasConceptScore W4387325066C13280743 @default.
- W4387325066 hasConceptScore W4387325066C153294291 @default.
- W4387325066 hasConceptScore W4387325066C154945302 @default.
- W4387325066 hasConceptScore W4387325066C185798385 @default.
- W4387325066 hasConceptScore W4387325066C205649164 @default.
- W4387325066 hasConceptScore W4387325066C31972630 @default.
- W4387325066 hasConceptScore W4387325066C41008148 @default.
- W4387325066 hasConceptScore W4387325066C58874564 @default.
- W4387325066 hasConceptScore W4387325066C79974267 @default.
- W4387325066 hasLocation W43873250661 @default.
- W4387325066 hasOpenAccess W4387325066 @default.
- W4387325066 hasPrimaryLocation W43873250661 @default.
- W4387325066 hasRelatedWork W1920543124 @default.
- W4387325066 hasRelatedWork W2357703469 @default.
- W4387325066 hasRelatedWork W2360189371 @default.
- W4387325066 hasRelatedWork W2363003319 @default.
- W4387325066 hasRelatedWork W2377479197 @default.
- W4387325066 hasRelatedWork W2383404717 @default.
- W4387325066 hasRelatedWork W2898303697 @default.
- W4387325066 hasRelatedWork W3111225517 @default.
- W4387325066 hasRelatedWork W4360602179 @default.
- W4387325066 hasRelatedWork W2611131363 @default.
- W4387325066 isParatext "false" @default.
- W4387325066 isRetracted "false" @default.
- W4387325066 workType "article" @default.