Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387325897> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4387325897 abstract "Future Medicinal ChemistryAhead of Print EditorialSTING upregulation strategies to potentiate STING immunotherapyWansang Cho, Jung Ho Lee & Seung Bum ParkWansang Cho https://orcid.org/0000-0002-5262-9543Department of Chemistry, Seoul National University, Seoul, 08826, KoreaSearch for more papers by this author, Jung Ho Lee https://orcid.org/0009-0000-6672-6291Department of Biophysics & Chemical Biology, Seoul National University, Seoul, 08826, KoreaSearch for more papers by this author & Seung Bum Park *Author for correspondence: E-mail Address: sbpark@snu.ac.krhttps://orcid.org/0000-0003-1753-1433Department of Chemistry, Seoul National University, Seoul, 08826, KoreaDepartment of Biophysics & Chemical Biology, Seoul National University, Seoul, 08826, KoreaSPARK Biopharma, Inc., 134 Gwanak-ro Gwanak-gu, Seoul, 08791, KoreaSearch for more papers by this authorPublished Online:4 Oct 2023https://doi.org/10.4155/fmc-2023-0227AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: ImmunotherapySTING AgonistsSTINGTargeted Protein UpregulationReferences1. Sato S, Sawada Y, Nakamura M. STING signaling and skin cancers. Cancers (Basel) 13(22), 5603 (2021).Crossref, Medline, CAS, Google Scholar2. Motedayen Aval L, Pease JE, Sharma R, Pinato DJ. Challenges and opportunities in the clinical development of STING agonists for cancer immunotherapy. J. Clin. Med. 9(10), 3323 (2020).Crossref, Medline, Google Scholar3. Dane EL, Belessiotis-Richards A, Backlund C et al. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nat. Mater. 21, 710–720 (2022).Crossref, Medline, CAS, Google Scholar4. Yi G, Brendel VP, Shu C, Li P, Palanathan S, Cheng Kao C. Single nucleotide polymorphisms of human STING can affect innate immune response to cyclic dinucleotides. PLOS One 8(10), e77846 (2013).Crossref, Medline, CAS, Google Scholar5. Xia T, Konno H, Barber GN. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res. 76(22), 6747–6759 (2016).Crossref, Medline, CAS, Google Scholar6. Li L, Yin Q, Kuss P et al. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10(12), 1043–1048 (2014).Crossref, Medline, CAS, Google Scholar7. Amouzegar A, Chelvanambi M, Filderman JN, Storkus WJ, Luke JJ. STING agonists as cancer therapeutics. Cancers (Basel) 13(11), 2695 (2021).Crossref, Medline, CAS, Google Scholar8. Zhong B, Zhang L, Lei C et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30(3), 397–407 (2009).Crossref, Medline, CAS, Google Scholar9. Xing J, Zhang A, Zhang H et al. TRIM29 promotes DNA virus infections by inhibiting innate immune response. Nat. Commun. 8(1), 945 (2017).Crossref, Medline, Google Scholar10. Gentili M, Liu B, Papanastasiou M et al. ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling. Nat. Commun. 14(1), 611 (2023).Crossref, Medline, CAS, Google Scholar11. Konno H, Konno K, Barber GN. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155(3), 688–698 (2013).Crossref, Medline, CAS, Google Scholar12. Chu TT, Tu X, Yang K, Wu J, Repa JJ, Yan N. Tonic prime-boost of STING signalling mediates Niemann–Pick disease type C. Nature 596(7873), 570–575 (2021).Crossref, Medline, CAS, Google Scholar13. Kang J, Wu J, Liu Q, Wu X, Zhao Y, Ren J. Post-translational modifications of STING: a potential therapeutic target. Front. Immunol. 13, 888147 (2022).Crossref, Medline, CAS, Google Scholar14. Lau L, Gray EE, Brunette RL, Stetson DB. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science (1979) 350(6260), 568–571 (2015).CAS, Google Scholar15. Zhu Y, An X, Zhang X, Qiao Y, Zheng T, Li X. STING: a master regulator in the cancer-immunity cycle. Mol. Cancer 18(1), 152 (2019).Crossref, Medline, Google Scholar16. Della Corte CM, Sen T, Gay CM et al. STING pathway expression identifies NSCLC with an immune-responsive phenotype. J. Thorac. Oncol. 15(5), 777–791 (2020).Crossref, Medline, Google Scholar17. Li X, Li Y, Zhao Z et al. Immunogenicity of small-cell lung cancer associates with STING pathway activation and is enhanced by ATR and TOP1 inhibition. Cancer Med. 12(4), 4864–4881 (2023).Crossref, Medline, CAS, Google Scholar18. Chon HJ, Kim H, Noh JH et al. STING signaling is a potential immunotherapeutic target in colorectal cancer. J. Cancer 10(20), 4932–4938 (2019).Crossref, Medline, CAS, Google Scholar19. De Queiroz NMGP, Xia T, Konno H, Barber GN. Ovarian cancer cells commonly exhibit defective STING signaling which affects sensitivity to viral oncolysis. Mol. Cancer Res. 17(4), 974–986 (2019).Crossref, Medline, Google Scholar20. Cho W, Won S, Choi Y et al. Targeted protein upregulation of STING for boosting the efficacy of immunotherapy. Angew. Chem. Int. Ed. Engl. 62(18), e202300978 (2023).Crossref, Medline, CAS, Google Scholar21. Li Q, Lin L, Tong Y et al. TRIM29 negatively controls antiviral immune response through targeting STING for degradation. Cell Discov. 4(1), 13 (2018).Crossref, Medline, Google Scholar22. Falahat R, Berglund A, Perez-Villarroel P et al. Epigenetic state determines the in vivo efficacy of STING agonist therapy. Nat. Commun. 14(1), 1573 (2023).Crossref, Medline, CAS, Google Scholar23. Lai J, Fu Y, Tian S et al. Zebularine elevates STING expression and enhances cGAMP cancer immunotherapy in mice. Mol. Ther. 29(5), 1758–1771 (2021).Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetails Ahead of Print STAY CONNECTED Metrics Downloaded 0 times History Received 4 August 2023 Accepted 10 August 2023 Published online 4 October 2023 Information© 2023 Newlands PressKeywordsImmunotherapySTING AgonistsSTINGTargeted Protein UpregulationAuthor contributionsW Cho prepared the manuscript. W Cho and JH Lee prepared the overall organization of the article and collected data and literature. SB Park oversaw all aspects of the manuscript preparation. All authors critically reviewed the manuscript.Financial & competing interests disclosureThis work was supported by the National Creative Research Initiative Grant (2014R1A3A2030423) through the National Research Foundation of Korea (NRF), funded by the Korean government (Ministry of Science and ICT). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending or royalties.No writing assistance was utilized in the production of this manuscript.PDF download" @default.
- W4387325897 created "2023-10-05" @default.
- W4387325897 creator A5060160990 @default.
- W4387325897 creator A5069102884 @default.
- W4387325897 creator A5091055050 @default.
- W4387325897 date "2023-10-04" @default.
- W4387325897 modified "2023-10-14" @default.
- W4387325897 title "STING upregulation strategies to potentiate STING immunotherapy" @default.
- W4387325897 cites W1993860509 @default.
- W4387325897 cites W2016771009 @default.
- W4387325897 cites W2027163190 @default.
- W4387325897 cites W2044330780 @default.
- W4387325897 cites W2525369565 @default.
- W4387325897 cites W2761362534 @default.
- W4387325897 cites W2806762285 @default.
- W4387325897 cites W2906160139 @default.
- W4387325897 cites W2973099721 @default.
- W4387325897 cites W2988506530 @default.
- W4387325897 cites W3006378317 @default.
- W4387325897 cites W3093056664 @default.
- W4387325897 cites W3127743852 @default.
- W4387325897 cites W3164702212 @default.
- W4387325897 cites W3186674199 @default.
- W4387325897 cites W3212252202 @default.
- W4387325897 cites W4228997950 @default.
- W4387325897 cites W4281384840 @default.
- W4387325897 cites W4301464629 @default.
- W4387325897 cites W4319231564 @default.
- W4387325897 cites W4321764935 @default.
- W4387325897 cites W4353087862 @default.
- W4387325897 doi "https://doi.org/10.4155/fmc-2023-0227" @default.
- W4387325897 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37791535" @default.
- W4387325897 hasPublicationYear "2023" @default.
- W4387325897 type Work @default.
- W4387325897 citedByCount "0" @default.
- W4387325897 crossrefType "journal-article" @default.
- W4387325897 hasAuthorship W4387325897A5060160990 @default.
- W4387325897 hasAuthorship W4387325897A5069102884 @default.
- W4387325897 hasAuthorship W4387325897A5091055050 @default.
- W4387325897 hasConcept C121332964 @default.
- W4387325897 hasConcept C161191863 @default.
- W4387325897 hasConcept C185592680 @default.
- W4387325897 hasConcept C2779300339 @default.
- W4387325897 hasConcept C2779473830 @default.
- W4387325897 hasConcept C41008148 @default.
- W4387325897 hasConcept C55493867 @default.
- W4387325897 hasConcept C71924100 @default.
- W4387325897 hasConcept C97355855 @default.
- W4387325897 hasConceptScore W4387325897C121332964 @default.
- W4387325897 hasConceptScore W4387325897C161191863 @default.
- W4387325897 hasConceptScore W4387325897C185592680 @default.
- W4387325897 hasConceptScore W4387325897C2779300339 @default.
- W4387325897 hasConceptScore W4387325897C2779473830 @default.
- W4387325897 hasConceptScore W4387325897C41008148 @default.
- W4387325897 hasConceptScore W4387325897C55493867 @default.
- W4387325897 hasConceptScore W4387325897C71924100 @default.
- W4387325897 hasConceptScore W4387325897C97355855 @default.
- W4387325897 hasFunder F4320322120 @default.
- W4387325897 hasLocation W43873258971 @default.
- W4387325897 hasLocation W43873258972 @default.
- W4387325897 hasOpenAccess W4387325897 @default.
- W4387325897 hasPrimaryLocation W43873258971 @default.
- W4387325897 hasRelatedWork W1506200166 @default.
- W4387325897 hasRelatedWork W1995515455 @default.
- W4387325897 hasRelatedWork W2048182022 @default.
- W4387325897 hasRelatedWork W2080531066 @default.
- W4387325897 hasRelatedWork W2748952813 @default.
- W4387325897 hasRelatedWork W2899084033 @default.
- W4387325897 hasRelatedWork W3031052312 @default.
- W4387325897 hasRelatedWork W3032375762 @default.
- W4387325897 hasRelatedWork W3108674512 @default.
- W4387325897 hasRelatedWork W4225487095 @default.
- W4387325897 isParatext "false" @default.
- W4387325897 isRetracted "false" @default.
- W4387325897 workType "article" @default.