Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387326864> ?p ?o ?g. }
- W4387326864 abstract "We propose a data-driven framework for identifying coarse-grained (CG) Lennard-Jones (LJ) potential parameters in confined systems for simple liquids. Our approach involves the use of a Deep Neural Network (DNN) that is trained to approximate the solution of the Inverse Liquid State (ILST) problem for confined systems. The DNN model inherently incorporates essential physical characteristics specific to confined fluids, enabling an accurate prediction of inhomogeneity effects. By utilizing transfer learning, we predict single-site LJ potentials of simple multiatomic liquids confined in a slit-like channel, which effectively replicate both the fluid structure and molecular force of the target All-Atom (AA) system when the electrostatic interactions are not dominant. In addition, we showcase the synergy between the data-driven approach and the well-known Bottom-Up coarse-graining method utilizing Relative-Entropy (RE) Minimization. Through the sequential utilization of these two methods, the robustness of the iterative RE method is significantly augmented, leading to a remarkable enhancement in convergence." @default.
- W4387326864 created "2023-10-05" @default.
- W4387326864 creator A5022107690 @default.
- W4387326864 creator A5047547125 @default.
- W4387326864 creator A5073593948 @default.
- W4387326864 date "2023-10-04" @default.
- W4387326864 modified "2023-10-14" @default.
- W4387326864 title "Data-Driven Approach to Coarse-Graining Simple Liquids in Confinement" @default.
- W4387326864 cites W1551220465 @default.
- W4387326864 cites W1666941390 @default.
- W4387326864 cites W1892911143 @default.
- W4387326864 cites W1964694986 @default.
- W4387326864 cites W1969347127 @default.
- W4387326864 cites W1973348284 @default.
- W4387326864 cites W1973767882 @default.
- W4387326864 cites W1978215757 @default.
- W4387326864 cites W1982141259 @default.
- W4387326864 cites W1986356457 @default.
- W4387326864 cites W1994047930 @default.
- W4387326864 cites W1996772559 @default.
- W4387326864 cites W1997073285 @default.
- W4387326864 cites W2001694077 @default.
- W4387326864 cites W2002480191 @default.
- W4387326864 cites W2002713604 @default.
- W4387326864 cites W2003834962 @default.
- W4387326864 cites W2007535564 @default.
- W4387326864 cites W2007872320 @default.
- W4387326864 cites W2009997795 @default.
- W4387326864 cites W2010889152 @default.
- W4387326864 cites W2012783301 @default.
- W4387326864 cites W2020584524 @default.
- W4387326864 cites W2023027986 @default.
- W4387326864 cites W2025444507 @default.
- W4387326864 cites W2026737855 @default.
- W4387326864 cites W2030856606 @default.
- W4387326864 cites W2035687084 @default.
- W4387326864 cites W2037788435 @default.
- W4387326864 cites W2046001409 @default.
- W4387326864 cites W2054059271 @default.
- W4387326864 cites W2060174126 @default.
- W4387326864 cites W2061308254 @default.
- W4387326864 cites W2066373790 @default.
- W4387326864 cites W2079950996 @default.
- W4387326864 cites W2081533041 @default.
- W4387326864 cites W2081773466 @default.
- W4387326864 cites W2091261803 @default.
- W4387326864 cites W2100886214 @default.
- W4387326864 cites W2107166616 @default.
- W4387326864 cites W2128695417 @default.
- W4387326864 cites W2137983211 @default.
- W4387326864 cites W2142694980 @default.
- W4387326864 cites W2159565091 @default.
- W4387326864 cites W2165557327 @default.
- W4387326864 cites W2257939807 @default.
- W4387326864 cites W2321074601 @default.
- W4387326864 cites W2328874718 @default.
- W4387326864 cites W2519084708 @default.
- W4387326864 cites W2607499792 @default.
- W4387326864 cites W2742127985 @default.
- W4387326864 cites W2778051509 @default.
- W4387326864 cites W2883583109 @default.
- W4387326864 cites W2909046662 @default.
- W4387326864 cites W2919725214 @default.
- W4387326864 cites W2922347161 @default.
- W4387326864 cites W2958784675 @default.
- W4387326864 cites W2972246420 @default.
- W4387326864 cites W2982032602 @default.
- W4387326864 cites W3005892601 @default.
- W4387326864 cites W3087799322 @default.
- W4387326864 cites W3087938969 @default.
- W4387326864 cites W3103390675 @default.
- W4387326864 cites W3106310231 @default.
- W4387326864 cites W3111960960 @default.
- W4387326864 cites W3125510434 @default.
- W4387326864 cites W3159653252 @default.
- W4387326864 cites W3177828909 @default.
- W4387326864 cites W3201073812 @default.
- W4387326864 cites W3215255282 @default.
- W4387326864 cites W4210524665 @default.
- W4387326864 cites W4213459053 @default.
- W4387326864 cites W4225405705 @default.
- W4387326864 cites W4294001680 @default.
- W4387326864 cites W4294891977 @default.
- W4387326864 doi "https://doi.org/10.1021/acs.jctc.3c00633" @default.
- W4387326864 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37791529" @default.
- W4387326864 hasPublicationYear "2023" @default.
- W4387326864 type Work @default.
- W4387326864 citedByCount "0" @default.
- W4387326864 crossrefType "journal-article" @default.
- W4387326864 hasAuthorship W4387326864A5022107690 @default.
- W4387326864 hasAuthorship W4387326864A5047547125 @default.
- W4387326864 hasAuthorship W4387326864A5073593948 @default.
- W4387326864 hasConcept C104317684 @default.
- W4387326864 hasConcept C111472728 @default.
- W4387326864 hasConcept C111919701 @default.
- W4387326864 hasConcept C11413529 @default.
- W4387326864 hasConcept C121332964 @default.
- W4387326864 hasConcept C121864883 @default.
- W4387326864 hasConcept C138885662 @default.
- W4387326864 hasConcept C147764199 @default.