Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387327900> ?p ?o ?g. }
- W4387327900 endingPage "109284" @default.
- W4387327900 startingPage "109284" @default.
- W4387327900 abstract "Recent studies have revealed that joint priors, such as joint sparsity and external nonlocal self-similarity (ENSS) prior and joint low-rank and sparsity prior, are extremely effective in various image inverse problems. Few works, however, make use of both low-rank and ENSS priors. With this in mind, in this paper we propose a new joint prior, namely LRENSS prior, which utilizes low-rank and ENSS priors jointly in a unified framework, and successfully adapt the proposed LRENSS prior to image restoration problems. Specifically, low-rank and ENSS priors are bridged by treating ENSS prior as dictionaries for structural sparse representation. Further, an elegant block coordinate descent method is developed to solve the corresponding optimization problem. The proposed LRENSS prior is validated on image denoising and image deblurring tasks. Experimental results illustrate that the proposed LRENSS prior has better performance than other state-of-the-art algorithms in both qualitative and quantitative assessments." @default.
- W4387327900 created "2023-10-05" @default.
- W4387327900 creator A5000030927 @default.
- W4387327900 creator A5024567259 @default.
- W4387327900 creator A5031138415 @default.
- W4387327900 creator A5076967467 @default.
- W4387327900 creator A5081489339 @default.
- W4387327900 date "2024-02-01" @default.
- W4387327900 modified "2023-10-09" @default.
- W4387327900 title "Image restoration via joint low-rank and external nonlocal self-similarity prior" @default.
- W4387327900 cites W1906770428 @default.
- W4387327900 cites W1974438823 @default.
- W4387327900 cites W1978749115 @default.
- W4387327900 cites W2011181254 @default.
- W4387327900 cites W2014311222 @default.
- W4387327900 cites W2042984553 @default.
- W4387327900 cites W2045737896 @default.
- W4387327900 cites W2056370875 @default.
- W4387327900 cites W2085692415 @default.
- W4387327900 cites W2111557737 @default.
- W4387327900 cites W2125527601 @default.
- W4387327900 cites W2133665775 @default.
- W4387327900 cites W2153663612 @default.
- W4387327900 cites W2160547390 @default.
- W4387327900 cites W2184334976 @default.
- W4387327900 cites W2203654268 @default.
- W4387327900 cites W2207282238 @default.
- W4387327900 cites W2399066089 @default.
- W4387327900 cites W2408480187 @default.
- W4387327900 cites W2423236762 @default.
- W4387327900 cites W2505029951 @default.
- W4387327900 cites W2508457857 @default.
- W4387327900 cites W2573726823 @default.
- W4387327900 cites W2613155248 @default.
- W4387327900 cites W2613184245 @default.
- W4387327900 cites W2767380400 @default.
- W4387327900 cites W2798427787 @default.
- W4387327900 cites W2890040911 @default.
- W4387327900 cites W2896184058 @default.
- W4387327900 cites W2964513785 @default.
- W4387327900 cites W2995679912 @default.
- W4387327900 cites W3012002796 @default.
- W4387327900 cites W3012209675 @default.
- W4387327900 cites W3035358272 @default.
- W4387327900 cites W3038886336 @default.
- W4387327900 cites W3081108418 @default.
- W4387327900 cites W3085462114 @default.
- W4387327900 cites W3100203369 @default.
- W4387327900 cites W3131193104 @default.
- W4387327900 cites W3161747711 @default.
- W4387327900 cites W3172689673 @default.
- W4387327900 cites W3173814687 @default.
- W4387327900 cites W3175607621 @default.
- W4387327900 cites W4226083785 @default.
- W4387327900 cites W4281926091 @default.
- W4387327900 cites W4283274575 @default.
- W4387327900 cites W4313478437 @default.
- W4387327900 cites W4362467143 @default.
- W4387327900 cites W4364356857 @default.
- W4387327900 doi "https://doi.org/10.1016/j.sigpro.2023.109284" @default.
- W4387327900 hasPublicationYear "2024" @default.
- W4387327900 type Work @default.
- W4387327900 citedByCount "0" @default.
- W4387327900 crossrefType "journal-article" @default.
- W4387327900 hasAuthorship W4387327900A5000030927 @default.
- W4387327900 hasAuthorship W4387327900A5024567259 @default.
- W4387327900 hasAuthorship W4387327900A5031138415 @default.
- W4387327900 hasAuthorship W4387327900A5076967467 @default.
- W4387327900 hasAuthorship W4387327900A5081489339 @default.
- W4387327900 hasBestOaLocation W43873279001 @default.
- W4387327900 hasConcept C103278499 @default.
- W4387327900 hasConcept C106430172 @default.
- W4387327900 hasConcept C107673813 @default.
- W4387327900 hasConcept C11413529 @default.
- W4387327900 hasConcept C114614502 @default.
- W4387327900 hasConcept C115961682 @default.
- W4387327900 hasConcept C124066611 @default.
- W4387327900 hasConcept C126255220 @default.
- W4387327900 hasConcept C127413603 @default.
- W4387327900 hasConcept C134306372 @default.
- W4387327900 hasConcept C135252773 @default.
- W4387327900 hasConcept C153180895 @default.
- W4387327900 hasConcept C154945302 @default.
- W4387327900 hasConcept C157553263 @default.
- W4387327900 hasConcept C164226766 @default.
- W4387327900 hasConcept C170154142 @default.
- W4387327900 hasConcept C17744445 @default.
- W4387327900 hasConcept C177769412 @default.
- W4387327900 hasConcept C18555067 @default.
- W4387327900 hasConcept C199539241 @default.
- W4387327900 hasConcept C2776359362 @default.
- W4387327900 hasConcept C2777693668 @default.
- W4387327900 hasConcept C33923547 @default.
- W4387327900 hasConcept C41008148 @default.
- W4387327900 hasConcept C9417928 @default.
- W4387327900 hasConcept C94625758 @default.
- W4387327900 hasConceptScore W4387327900C103278499 @default.
- W4387327900 hasConceptScore W4387327900C106430172 @default.