Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387330719> ?p ?o ?g. }
- W4387330719 abstract "Model hybrid hydrogels reinforced by silica nanoparticles were designed by polymerizing and cross-linking the gels in situ. The polymer–particle interactions were tuned by using either poly(dimethylacrylamide) (PDMA), which adsorbs on silica, or poly(acrylamide) (PAAm), which does not. Besides, the dispersion state of silica nanoparticles was tuned from well-dispersed to aggregated by changing the pH from 9, which ensures repulsive interactions between nanoparticles and good dispersion state, to about 6, which affects the surface chemistry of silica and promotes aggregation. The dispersion states were characterized by small-angle X-ray scattering (SAXS). The mechanical behavior of hybrid gels with aggregated nanoparticles is markedly different from those where silica is well-dispersed within the matrix. PDMA-based hybrid gels display pronounced nonlinear behavior, somehow similar to those observed in filled elastomers. The nonlinearities are even more pronounced in gels with aggregated particles, with strong strain stiffening along with large dissipation. For those samples, reinforcement can be attributed to the combination of both reversible interactions between PDMA and silica nanoparticles, which provide strain stiffening and recovery, and the response of the silica network. Recovery processes observed in hybrid gels with dispersed particles are preserved when silica particles are aggregated, but the characteristic time needed to fully recover the mechanical response is extended from a few seconds to several hours. In PAAm-based hybrid gels with aggregated silica nanoparticles, no recovery processes are observed. This implies that the properties, namely, the very high linear tensile modulus and high dissipated energy, are driven by the rigid network formed by nanoparticle aggregation, which provides high dissipative capabilities, especially when compared to PAAm-based hybrid gels with dispersed silica, that remain soft and fragile. These gels exhibit a quite inhomogeneous structure, with permanent damage under elongation. The nonlinear dynamical behavior of hybrid gels was investigated by large amplitude oscillatory shear (LAOS) experiments. While unfilled gels show no nonlinearity up to very large strain amplitude, marked nonlinear effects combining a drop in modulus (similar to the Payne effect) and strain stiffening for increasing strain amplitude are observed in PDMA-based hybrid gels, certainly due to polymer adsorption onto nanoparticles. PAAm-based hybrid gels also show nonlinearity, with a drop in modulus for increasing strain but no strain stiffening, indicating that the presence of fillers alone can induce nonlinearity in the absence of strong, reversible polymer–particle interactions. PAAm-based hybrid gels with aggregated silica show very high stiffness and high dissipative properties at the expense of stretchability, though. Also, the structure seems to be permanently damaged under stress, revealing the importance of silica–polymer interactions for permanent mechanical reinforcement. Altogether, the analysis of the nonlinear behavior indicates the importance of combining dynamic adsorption of polymer chains on silica nanoparticles with mechanical reinforcement provided by the silica network." @default.
- W4387330719 created "2023-10-05" @default.
- W4387330719 creator A5000704327 @default.
- W4387330719 creator A5008680847 @default.
- W4387330719 creator A5015406077 @default.
- W4387330719 creator A5028297488 @default.
- W4387330719 creator A5031009436 @default.
- W4387330719 creator A5076241844 @default.
- W4387330719 creator A5084646772 @default.
- W4387330719 date "2023-10-04" @default.
- W4387330719 modified "2023-10-17" @default.
- W4387330719 title "Double Networks: Hybrid Hydrogels with Clustered Silica" @default.
- W4387330719 cites W157801197 @default.
- W4387330719 cites W1973413329 @default.
- W4387330719 cites W1977225912 @default.
- W4387330719 cites W1987023965 @default.
- W4387330719 cites W1991037488 @default.
- W4387330719 cites W1992470331 @default.
- W4387330719 cites W1993334931 @default.
- W4387330719 cites W1997010589 @default.
- W4387330719 cites W1997247598 @default.
- W4387330719 cites W1998073601 @default.
- W4387330719 cites W2000624979 @default.
- W4387330719 cites W2003037791 @default.
- W4387330719 cites W2005026369 @default.
- W4387330719 cites W2011663513 @default.
- W4387330719 cites W2015002189 @default.
- W4387330719 cites W2015401065 @default.
- W4387330719 cites W2017481229 @default.
- W4387330719 cites W2023005911 @default.
- W4387330719 cites W2024410170 @default.
- W4387330719 cites W2033217695 @default.
- W4387330719 cites W2037245850 @default.
- W4387330719 cites W2040657554 @default.
- W4387330719 cites W2046060386 @default.
- W4387330719 cites W2053653848 @default.
- W4387330719 cites W2056032194 @default.
- W4387330719 cites W2057114799 @default.
- W4387330719 cites W2058119786 @default.
- W4387330719 cites W2059494643 @default.
- W4387330719 cites W2060580868 @default.
- W4387330719 cites W2072079328 @default.
- W4387330719 cites W2089476900 @default.
- W4387330719 cites W2092759967 @default.
- W4387330719 cites W2095122216 @default.
- W4387330719 cites W2099213797 @default.
- W4387330719 cites W2101443933 @default.
- W4387330719 cites W2109464227 @default.
- W4387330719 cites W2126675279 @default.
- W4387330719 cites W2133322513 @default.
- W4387330719 cites W2134835131 @default.
- W4387330719 cites W2136845482 @default.
- W4387330719 cites W2137346096 @default.
- W4387330719 cites W2141781887 @default.
- W4387330719 cites W2142288085 @default.
- W4387330719 cites W2164068930 @default.
- W4387330719 cites W2167232736 @default.
- W4387330719 cites W2168241859 @default.
- W4387330719 cites W2219518664 @default.
- W4387330719 cites W2235454381 @default.
- W4387330719 cites W2318111159 @default.
- W4387330719 cites W2320917498 @default.
- W4387330719 cites W2322643392 @default.
- W4387330719 cites W2322846395 @default.
- W4387330719 cites W2325806896 @default.
- W4387330719 cites W2326046110 @default.
- W4387330719 cites W2330214967 @default.
- W4387330719 cites W2333464626 @default.
- W4387330719 cites W2405169989 @default.
- W4387330719 cites W2410309272 @default.
- W4387330719 cites W2783863192 @default.
- W4387330719 cites W2795416640 @default.
- W4387330719 cites W2808628827 @default.
- W4387330719 cites W2940840321 @default.
- W4387330719 cites W2968535096 @default.
- W4387330719 cites W2979971152 @default.
- W4387330719 cites W3035989870 @default.
- W4387330719 cites W3099377626 @default.
- W4387330719 cites W3159000217 @default.
- W4387330719 cites W4283166683 @default.
- W4387330719 cites W4292336644 @default.
- W4387330719 cites W4311788293 @default.
- W4387330719 cites W4318070670 @default.
- W4387330719 cites W4328099884 @default.
- W4387330719 cites W4386949142 @default.
- W4387330719 doi "https://doi.org/10.1021/acs.macromol.3c01440" @default.
- W4387330719 hasPublicationYear "2023" @default.
- W4387330719 type Work @default.
- W4387330719 citedByCount "0" @default.
- W4387330719 crossrefType "journal-article" @default.
- W4387330719 hasAuthorship W4387330719A5000704327 @default.
- W4387330719 hasAuthorship W4387330719A5008680847 @default.
- W4387330719 hasAuthorship W4387330719A5015406077 @default.
- W4387330719 hasAuthorship W4387330719A5028297488 @default.
- W4387330719 hasAuthorship W4387330719A5031009436 @default.
- W4387330719 hasAuthorship W4387330719A5076241844 @default.
- W4387330719 hasAuthorship W4387330719A5084646772 @default.
- W4387330719 hasConcept C108586683 @default.
- W4387330719 hasConcept C111368507 @default.
- W4387330719 hasConcept C120665830 @default.