Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387331383> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4387331383 endingPage "1" @default.
- W4387331383 startingPage "1" @default.
- W4387331383 abstract "Low-rank tensor representation (LRTR) methods have attracted great interest for their powerful ability to separate backgrounds and anomalies. However, most of the current LRTR models use the popular and convex surrogate tensor nuclear norm to solve optimization problems, which results in a loose approximation and suboptimal solver for the original problem. Besides, most existing methods solve the nonconvex optimization problems case-by-case, consequently losing one unified solver. To solve the above issues, we propose the Generalized Nonconvex Low-rank Tensor Representation (GNLTR) for hyperspectral anomaly detection (HAD), a unified solver not case-by-case one of existing nonconvex optimization problems. Compared to the tensor nuclear norm, GNLTR contains many popular nonconvex penalty functions as tighter regularizers of the tensor tubal rank to constrain the low rank of the background. Moreover, the <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>L</i> <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2,1</sub> norm has been integrated into the GNLTR model for the sparse anomalies. For the optimization problem, it is handled quickly and efficiently through a well-organized alternating direction method of multipliers (ADMM). The experiments on several real-world hyperspectral data sets demonstrate the superior performance of the GNLTR model in comparison with some state-of-the-art anomaly detection models." @default.
- W4387331383 created "2023-10-05" @default.
- W4387331383 creator A5019972814 @default.
- W4387331383 creator A5020975557 @default.
- W4387331383 creator A5031480448 @default.
- W4387331383 creator A5045551260 @default.
- W4387331383 creator A5057343419 @default.
- W4387331383 date "2023-01-01" @default.
- W4387331383 modified "2023-10-17" @default.
- W4387331383 title "Generalized Nonconvex Low-rank Tensor Representation for Hyperspectral Anomaly Detection" @default.
- W4387331383 doi "https://doi.org/10.1109/tgrs.2023.3321789" @default.
- W4387331383 hasPublicationYear "2023" @default.
- W4387331383 type Work @default.
- W4387331383 citedByCount "0" @default.
- W4387331383 crossrefType "journal-article" @default.
- W4387331383 hasAuthorship W4387331383A5019972814 @default.
- W4387331383 hasAuthorship W4387331383A5020975557 @default.
- W4387331383 hasAuthorship W4387331383A5031480448 @default.
- W4387331383 hasAuthorship W4387331383A5045551260 @default.
- W4387331383 hasAuthorship W4387331383A5057343419 @default.
- W4387331383 hasConcept C11413529 @default.
- W4387331383 hasConcept C114614502 @default.
- W4387331383 hasConcept C121332964 @default.
- W4387331383 hasConcept C126255220 @default.
- W4387331383 hasConcept C137836250 @default.
- W4387331383 hasConcept C154945302 @default.
- W4387331383 hasConcept C155281189 @default.
- W4387331383 hasConcept C158693339 @default.
- W4387331383 hasConcept C159078339 @default.
- W4387331383 hasConcept C164226766 @default.
- W4387331383 hasConcept C17744445 @default.
- W4387331383 hasConcept C191795146 @default.
- W4387331383 hasConcept C199539241 @default.
- W4387331383 hasConcept C202444582 @default.
- W4387331383 hasConcept C2778770139 @default.
- W4387331383 hasConcept C33923547 @default.
- W4387331383 hasConcept C41008148 @default.
- W4387331383 hasConcept C62520636 @default.
- W4387331383 hasConcept C92207270 @default.
- W4387331383 hasConceptScore W4387331383C11413529 @default.
- W4387331383 hasConceptScore W4387331383C114614502 @default.
- W4387331383 hasConceptScore W4387331383C121332964 @default.
- W4387331383 hasConceptScore W4387331383C126255220 @default.
- W4387331383 hasConceptScore W4387331383C137836250 @default.
- W4387331383 hasConceptScore W4387331383C154945302 @default.
- W4387331383 hasConceptScore W4387331383C155281189 @default.
- W4387331383 hasConceptScore W4387331383C158693339 @default.
- W4387331383 hasConceptScore W4387331383C159078339 @default.
- W4387331383 hasConceptScore W4387331383C164226766 @default.
- W4387331383 hasConceptScore W4387331383C17744445 @default.
- W4387331383 hasConceptScore W4387331383C191795146 @default.
- W4387331383 hasConceptScore W4387331383C199539241 @default.
- W4387331383 hasConceptScore W4387331383C202444582 @default.
- W4387331383 hasConceptScore W4387331383C2778770139 @default.
- W4387331383 hasConceptScore W4387331383C33923547 @default.
- W4387331383 hasConceptScore W4387331383C41008148 @default.
- W4387331383 hasConceptScore W4387331383C62520636 @default.
- W4387331383 hasConceptScore W4387331383C92207270 @default.
- W4387331383 hasFunder F4320321001 @default.
- W4387331383 hasLocation W43873313831 @default.
- W4387331383 hasOpenAccess W4387331383 @default.
- W4387331383 hasPrimaryLocation W43873313831 @default.
- W4387331383 hasRelatedWork W2404690860 @default.
- W4387331383 hasRelatedWork W2726440795 @default.
- W4387331383 hasRelatedWork W2767478428 @default.
- W4387331383 hasRelatedWork W2781549591 @default.
- W4387331383 hasRelatedWork W2803565462 @default.
- W4387331383 hasRelatedWork W2964072480 @default.
- W4387331383 hasRelatedWork W2982211507 @default.
- W4387331383 hasRelatedWork W2988546174 @default.
- W4387331383 hasRelatedWork W4294373705 @default.
- W4387331383 hasRelatedWork W4313447577 @default.
- W4387331383 isParatext "false" @default.
- W4387331383 isRetracted "false" @default.
- W4387331383 workType "article" @default.