Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387331810> ?p ?o ?g. }
- W4387331810 endingPage "e0285377" @default.
- W4387331810 startingPage "e0285377" @default.
- W4387331810 abstract "Shifting the food system to a more sustainable one requires changes on both sides of the supply chain, with the consumer playing a key role. Therefore, understanding the factors that positively correlate with increased organic food sales over time for an entire population can help guide policymakers, industry, and research to increase this transition further. Using a statistical approach, we developed a spatial pooled cross-sectional model to analyze factors that positively correlate with an increased demand for organic food sales over 20 years (1999–2019) for an entire region (the city-state of Hamburg, Germany), accounting for spatial effects through the spatial error model, spatially lagged X model, and spatial Durbin error model. The results indicated that voting behavior strongly correlated with increased organic food sales over time. Specifically, areas with a higher number of residents that voted for a political party with a core focus on environmental issues, the Greens and the Left Party in Germany. However, there is a stronger connection with the more “radical” Left Party than with the “mainstream” Green Party, which may provide evidence for the attitude-behavior gap, as Left Party supporters are very convinced of their attitudes (pro-environment) and behavior thus follows. By including time and space, this analysis is the first to summarize developments over time for a metropolitan population while accounting for spatial effects and identifying areas for targeted marketing that need further motivation to increase organic food sales." @default.
- W4387331810 created "2023-10-05" @default.
- W4387331810 creator A5031189385 @default.
- W4387331810 creator A5060745931 @default.
- W4387331810 date "2023-10-04" @default.
- W4387331810 modified "2023-10-16" @default.
- W4387331810 title "Analyzing drivers of organic food sales–A pooled spatial data analysis for Hamburg (Germany)" @default.
- W4387331810 cites W1601195269 @default.
- W4387331810 cites W1940771340 @default.
- W4387331810 cites W1943760092 @default.
- W4387331810 cites W1967657295 @default.
- W4387331810 cites W1969374468 @default.
- W4387331810 cites W1977341902 @default.
- W4387331810 cites W1978051336 @default.
- W4387331810 cites W1980517748 @default.
- W4387331810 cites W1987759449 @default.
- W4387331810 cites W1992404516 @default.
- W4387331810 cites W1993048920 @default.
- W4387331810 cites W1993768921 @default.
- W4387331810 cites W1996467274 @default.
- W4387331810 cites W2015209634 @default.
- W4387331810 cites W2030649282 @default.
- W4387331810 cites W2030667337 @default.
- W4387331810 cites W2031293779 @default.
- W4387331810 cites W2034520239 @default.
- W4387331810 cites W2040369576 @default.
- W4387331810 cites W2043561323 @default.
- W4387331810 cites W2043788098 @default.
- W4387331810 cites W2057851474 @default.
- W4387331810 cites W2064328136 @default.
- W4387331810 cites W2068789480 @default.
- W4387331810 cites W2070363707 @default.
- W4387331810 cites W2080013037 @default.
- W4387331810 cites W2083188726 @default.
- W4387331810 cites W2089710037 @default.
- W4387331810 cites W2089863055 @default.
- W4387331810 cites W2102951652 @default.
- W4387331810 cites W2128082596 @default.
- W4387331810 cites W2148333466 @default.
- W4387331810 cites W2156321944 @default.
- W4387331810 cites W2166106775 @default.
- W4387331810 cites W2271174547 @default.
- W4387331810 cites W2281926242 @default.
- W4387331810 cites W2319905266 @default.
- W4387331810 cites W2338120877 @default.
- W4387331810 cites W2395340484 @default.
- W4387331810 cites W2584355173 @default.
- W4387331810 cites W2586362287 @default.
- W4387331810 cites W2592363630 @default.
- W4387331810 cites W2613708739 @default.
- W4387331810 cites W2627035078 @default.
- W4387331810 cites W2740444099 @default.
- W4387331810 cites W2740528709 @default.
- W4387331810 cites W2740700845 @default.
- W4387331810 cites W2745627139 @default.
- W4387331810 cites W2766302365 @default.
- W4387331810 cites W2766564513 @default.
- W4387331810 cites W2769020739 @default.
- W4387331810 cites W2770887445 @default.
- W4387331810 cites W2790131038 @default.
- W4387331810 cites W2791767703 @default.
- W4387331810 cites W2791913534 @default.
- W4387331810 cites W2793350103 @default.
- W4387331810 cites W2794447498 @default.
- W4387331810 cites W2803901105 @default.
- W4387331810 cites W2889620410 @default.
- W4387331810 cites W2909678677 @default.
- W4387331810 cites W2914525751 @default.
- W4387331810 cites W2922378665 @default.
- W4387331810 cites W2951433481 @default.
- W4387331810 cites W2951639554 @default.
- W4387331810 cites W2955650148 @default.
- W4387331810 cites W2968010768 @default.
- W4387331810 cites W2979768372 @default.
- W4387331810 cites W2990078375 @default.
- W4387331810 cites W3016410151 @default.
- W4387331810 cites W3116178141 @default.
- W4387331810 cites W841604941 @default.
- W4387331810 doi "https://doi.org/10.1371/journal.pone.0285377" @default.
- W4387331810 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37792695" @default.
- W4387331810 hasPublicationYear "2023" @default.
- W4387331810 type Work @default.
- W4387331810 citedByCount "0" @default.
- W4387331810 crossrefType "journal-article" @default.
- W4387331810 hasAuthorship W4387331810A5031189385 @default.
- W4387331810 hasAuthorship W4387331810A5060745931 @default.
- W4387331810 hasBestOaLocation W43873318101 @default.
- W4387331810 hasConcept C118518473 @default.
- W4387331810 hasConcept C144133560 @default.
- W4387331810 hasConcept C158739034 @default.
- W4387331810 hasConcept C162324750 @default.
- W4387331810 hasConcept C162853370 @default.
- W4387331810 hasConcept C166957645 @default.
- W4387331810 hasConcept C17744445 @default.
- W4387331810 hasConcept C18903297 @default.
- W4387331810 hasConcept C199539241 @default.
- W4387331810 hasConcept C205649164 @default.
- W4387331810 hasConcept C2777617010 @default.