Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387332413> ?p ?o ?g. }
- W4387332413 endingPage "8241" @default.
- W4387332413 startingPage "8241" @default.
- W4387332413 abstract "Road defect detection is a crucial aspect of road maintenance projects, but traditional manual methods are time-consuming, labor-intensive, and lack accuracy. Leveraging deep learning frameworks for object detection offers a promising solution to these challenges. However, the complexity of backgrounds, low resolution, and similarity of cracks make detecting road cracks with high accuracy challenging. To address these issues, a novel road crack detection algorithm, termed Road Defect Detection YOLOv5 (RDD-YOLOv5), was proposed. Firstly, a model was proposed to integrate the transformer structure and explicit vision center to capture the long-distance dependency and aggregate key characteristics. Additionally, the Sigmoid-weighted linear activations in YOLOv5 were replaced with the Gaussian Error Linear Units to enhance the model's nonlinear fitting capability. To evaluate the algorithm's performance, a UAV flight platform was constructed, and experimental freebies were provided to boost inspection efficiency. The experimental results demonstrate the effectiveness of RDD-YOLOv5, achieving a mean average precision of 91.48%, surpassing the original YOLOv5 by 2.5%. The proposed model proves its ability to accurately identify road cracks, even under challenging and complex traffic backgrounds. This advancement in road crack detection technology has significant implications for improving road maintenance and safety." @default.
- W4387332413 created "2023-10-05" @default.
- W4387332413 creator A5003763398 @default.
- W4387332413 creator A5008238809 @default.
- W4387332413 creator A5044912017 @default.
- W4387332413 creator A5046640541 @default.
- W4387332413 creator A5059494004 @default.
- W4387332413 creator A5085684065 @default.
- W4387332413 date "2023-10-03" @default.
- W4387332413 modified "2023-10-15" @default.
- W4387332413 title "RDD-YOLOv5: Road Defect Detection Algorithm with Self-Attention Based on Unmanned Aerial Vehicle Inspection" @default.
- W4387332413 cites W1536680647 @default.
- W4387332413 cites W1544500235 @default.
- W4387332413 cites W1862829300 @default.
- W4387332413 cites W2008488233 @default.
- W4387332413 cites W2019496031 @default.
- W4387332413 cites W2024692910 @default.
- W4387332413 cites W2033819500 @default.
- W4387332413 cites W2079054397 @default.
- W4387332413 cites W2097886433 @default.
- W4387332413 cites W2102605133 @default.
- W4387332413 cites W2136319630 @default.
- W4387332413 cites W2138014601 @default.
- W4387332413 cites W2144801789 @default.
- W4387332413 cites W2312405072 @default.
- W4387332413 cites W2407692387 @default.
- W4387332413 cites W2523358814 @default.
- W4387332413 cites W2774356095 @default.
- W4387332413 cites W2795325883 @default.
- W4387332413 cites W2809002558 @default.
- W4387332413 cites W2810477488 @default.
- W4387332413 cites W2884585870 @default.
- W4387332413 cites W2962374310 @default.
- W4387332413 cites W2962834855 @default.
- W4387332413 cites W2963150697 @default.
- W4387332413 cites W2963786238 @default.
- W4387332413 cites W2964308596 @default.
- W4387332413 cites W2992308087 @default.
- W4387332413 cites W3001456352 @default.
- W4387332413 cites W3021470593 @default.
- W4387332413 cites W3088228871 @default.
- W4387332413 cites W3101573458 @default.
- W4387332413 cites W3124942917 @default.
- W4387332413 cites W3138516171 @default.
- W4387332413 cites W3161660388 @default.
- W4387332413 cites W3163075549 @default.
- W4387332413 cites W3176378302 @default.
- W4387332413 cites W3203911595 @default.
- W4387332413 cites W3210586215 @default.
- W4387332413 cites W3213742061 @default.
- W4387332413 cites W4225321635 @default.
- W4387332413 cites W4281383639 @default.
- W4387332413 cites W4283392684 @default.
- W4387332413 cites W4285286021 @default.
- W4387332413 cites W4307823382 @default.
- W4387332413 cites W4327960857 @default.
- W4387332413 cites W4385257519 @default.
- W4387332413 cites W4386076325 @default.
- W4387332413 cites W639708223 @default.
- W4387332413 doi "https://doi.org/10.3390/s23198241" @default.
- W4387332413 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37837071" @default.
- W4387332413 hasPublicationYear "2023" @default.
- W4387332413 type Work @default.
- W4387332413 citedByCount "0" @default.
- W4387332413 crossrefType "journal-article" @default.
- W4387332413 hasAuthorship W4387332413A5003763398 @default.
- W4387332413 hasAuthorship W4387332413A5008238809 @default.
- W4387332413 hasAuthorship W4387332413A5044912017 @default.
- W4387332413 hasAuthorship W4387332413A5046640541 @default.
- W4387332413 hasAuthorship W4387332413A5059494004 @default.
- W4387332413 hasAuthorship W4387332413A5085684065 @default.
- W4387332413 hasBestOaLocation W43873324131 @default.
- W4387332413 hasConcept C11413529 @default.
- W4387332413 hasConcept C121332964 @default.
- W4387332413 hasConcept C154945302 @default.
- W4387332413 hasConcept C158622935 @default.
- W4387332413 hasConcept C19768560 @default.
- W4387332413 hasConcept C31972630 @default.
- W4387332413 hasConcept C41008148 @default.
- W4387332413 hasConcept C62520636 @default.
- W4387332413 hasConcept C79403827 @default.
- W4387332413 hasConceptScore W4387332413C11413529 @default.
- W4387332413 hasConceptScore W4387332413C121332964 @default.
- W4387332413 hasConceptScore W4387332413C154945302 @default.
- W4387332413 hasConceptScore W4387332413C158622935 @default.
- W4387332413 hasConceptScore W4387332413C19768560 @default.
- W4387332413 hasConceptScore W4387332413C31972630 @default.
- W4387332413 hasConceptScore W4387332413C41008148 @default.
- W4387332413 hasConceptScore W4387332413C62520636 @default.
- W4387332413 hasConceptScore W4387332413C79403827 @default.
- W4387332413 hasIssue "19" @default.
- W4387332413 hasLocation W43873324131 @default.
- W4387332413 hasLocation W43873324132 @default.
- W4387332413 hasOpenAccess W4387332413 @default.
- W4387332413 hasPrimaryLocation W43873324131 @default.
- W4387332413 hasRelatedWork W2051487156 @default.
- W4387332413 hasRelatedWork W2067317451 @default.
- W4387332413 hasRelatedWork W2073681303 @default.