Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387334890> ?p ?o ?g. }
- W4387334890 endingPage "22" @default.
- W4387334890 startingPage "1" @default.
- W4387334890 abstract "AbstractFor urban growth modeling, assessment metrics derived from cell-by-cell comparisons are mainly related to the size of the study area and the urban growth rate. Non-urban areas always occupy an important part of the city to which cellular automata (CA) models do not contribute much, so the simulation accuracy is often exaggerated when this part is included. To enable comparing simulation results across models, regions, and time, we developed an improved equivalent area-based assessment (EQASS) method using cell-by-cell comparison metrics. As against existing assessment methods, EQASS is computed by including the same area of urban and suburban areas (i.e., equivalent areas). EQASS was tested in three Chinese coastal cities using a heuristic CA model and two spatial statistical CA models to simulate urban growth. The results show that EQASS can exclude correct rejections that are not attributable to CA models; these correct rejections have a significant impact on the model assessment. The improved assessment can better evaluate the performance of CA models across regions and over time than the conventional assessment method that accounts for the full study area. This study extends the simulation assessment method and provides a good solution for selecting the best CA model from many candidate models.Keywords: Model assessmentcellular automatabuffer analysisurban growthaccuracy comparison Disclosure statementNo potential conflict of interest was reported by the author(s).Data and codes availability statementThe software, codes and input datasets involved in this study are available at https://doi.org/10.6084/m9.figshare.21203147.Additional informationFundingSupported by the National Natural Science Foundation of China (42071371) and the National Key R&D Program of China (2018YFB0505400).Notes on contributorsChen GaoChen Gao received the M.S. degree in marine sciences from Shanghai Ocean University, Shanghai, China, in 2021. She is currently working toward the Ph.D. degree in surveying and geoinformation with Tongji University, Shanghai, China.Yongjiu FengYongjiu Feng received the Ph.D. degree in geomatics from Tongji University, Shanghai, China, in 2009. He is currently a Professor and Associate Dean with the College of Surveying and Geo-Informatics, Tongji University. His research interests include spatial modeling, synthetic aperture radar, and radar detection of the moon and deep space.Mengrong XiMengrong Xi received the B.E. degree in geomatics engineering from Tongji University, Shanghai, China, in 2022. He is currently working toward the Ph.D. degree in surveying and geoinformation with Tongji University, Shanghai, China.Rong WangRong Wang received the M.S. degree in marine sciences from Shanghai Ocean University, Shanghai, China, in 2022. She is currently working toward the Ph.D. degree in artificial intelligence with Tongji University, Shanghai, China.Pengshuo LiPengshuo Li received the B.E. degree in geomatics engineering from Tongji University, Shanghai, China, in 2021. He is currently working toward the M.S. degree in surveying and geoinformation with Tongji University, Shanghai, China.Xiaoyan TangXiaoyan Tang received the M.S. degree in cartography and geographical information engineering from Chang’an University, Xi’an, China, in 2013. She is currently working toward the Ph.D. degree in surveying and geoinformation with Tongji University, Shanghai, China.Xiaohua TongXiaohua Tong received the Ph.D. degree in geomatics from Tongji University, Shanghai, China, in 1999. He is currently a Professor with the College of Surveying and GeoInformatics, Tongji University. His research interests include photogrammetry and remote sensing, trust in spatial data, and image processing for high-resolution satellite images." @default.
- W4387334890 created "2023-10-05" @default.
- W4387334890 creator A5010675140 @default.
- W4387334890 creator A5013031996 @default.
- W4387334890 creator A5039348214 @default.
- W4387334890 creator A5045580642 @default.
- W4387334890 creator A5062177080 @default.
- W4387334890 creator A5082150792 @default.
- W4387334890 creator A5082604248 @default.
- W4387334890 date "2023-10-04" @default.
- W4387334890 modified "2023-10-14" @default.
- W4387334890 title "An improved assessment method for urban growth simulations across models, regions, and time" @default.
- W4387334890 cites W1490600686 @default.
- W4387334890 cites W1577352482 @default.
- W4387334890 cites W1970339185 @default.
- W4387334890 cites W1974521041 @default.
- W4387334890 cites W1981872228 @default.
- W4387334890 cites W1986426309 @default.
- W4387334890 cites W2006021982 @default.
- W4387334890 cites W2017046847 @default.
- W4387334890 cites W2022115063 @default.
- W4387334890 cites W2023433987 @default.
- W4387334890 cites W2032568597 @default.
- W4387334890 cites W2036871957 @default.
- W4387334890 cites W2041588414 @default.
- W4387334890 cites W2047120335 @default.
- W4387334890 cites W2067117278 @default.
- W4387334890 cites W2072090781 @default.
- W4387334890 cites W2095160972 @default.
- W4387334890 cites W2104896032 @default.
- W4387334890 cites W2171418979 @default.
- W4387334890 cites W2171730709 @default.
- W4387334890 cites W2277222488 @default.
- W4387334890 cites W2288294253 @default.
- W4387334890 cites W2364759665 @default.
- W4387334890 cites W2465055319 @default.
- W4387334890 cites W2519424133 @default.
- W4387334890 cites W2550598628 @default.
- W4387334890 cites W2603952042 @default.
- W4387334890 cites W2625053970 @default.
- W4387334890 cites W2741850062 @default.
- W4387334890 cites W2742044449 @default.
- W4387334890 cites W2757731435 @default.
- W4387334890 cites W2769192737 @default.
- W4387334890 cites W2782864576 @default.
- W4387334890 cites W2790818269 @default.
- W4387334890 cites W2803764787 @default.
- W4387334890 cites W2884776398 @default.
- W4387334890 cites W2885359063 @default.
- W4387334890 cites W2898946526 @default.
- W4387334890 cites W2899464196 @default.
- W4387334890 cites W2909459832 @default.
- W4387334890 cites W2911166976 @default.
- W4387334890 cites W2913910070 @default.
- W4387334890 cites W2965654659 @default.
- W4387334890 cites W2987897613 @default.
- W4387334890 cites W3001841189 @default.
- W4387334890 cites W3043574888 @default.
- W4387334890 cites W3087022217 @default.
- W4387334890 cites W3172813651 @default.
- W4387334890 cites W4210699701 @default.
- W4387334890 cites W4284685349 @default.
- W4387334890 doi "https://doi.org/10.1080/13658816.2023.2264942" @default.
- W4387334890 hasPublicationYear "2023" @default.
- W4387334890 type Work @default.
- W4387334890 citedByCount "0" @default.
- W4387334890 crossrefType "journal-article" @default.
- W4387334890 hasAuthorship W4387334890A5010675140 @default.
- W4387334890 hasAuthorship W4387334890A5013031996 @default.
- W4387334890 hasAuthorship W4387334890A5039348214 @default.
- W4387334890 hasAuthorship W4387334890A5045580642 @default.
- W4387334890 hasAuthorship W4387334890A5062177080 @default.
- W4387334890 hasAuthorship W4387334890A5082150792 @default.
- W4387334890 hasAuthorship W4387334890A5082604248 @default.
- W4387334890 hasConcept C124101348 @default.
- W4387334890 hasConcept C154945302 @default.
- W4387334890 hasConcept C173801870 @default.
- W4387334890 hasConcept C18903297 @default.
- W4387334890 hasConcept C2778368647 @default.
- W4387334890 hasConcept C35527583 @default.
- W4387334890 hasConcept C41008148 @default.
- W4387334890 hasConcept C86803240 @default.
- W4387334890 hasConceptScore W4387334890C124101348 @default.
- W4387334890 hasConceptScore W4387334890C154945302 @default.
- W4387334890 hasConceptScore W4387334890C173801870 @default.
- W4387334890 hasConceptScore W4387334890C18903297 @default.
- W4387334890 hasConceptScore W4387334890C2778368647 @default.
- W4387334890 hasConceptScore W4387334890C35527583 @default.
- W4387334890 hasConceptScore W4387334890C41008148 @default.
- W4387334890 hasConceptScore W4387334890C86803240 @default.
- W4387334890 hasFunder F4320321001 @default.
- W4387334890 hasFunder F4320335777 @default.
- W4387334890 hasLocation W43873348901 @default.
- W4387334890 hasOpenAccess W4387334890 @default.
- W4387334890 hasPrimaryLocation W43873348901 @default.
- W4387334890 hasRelatedWork W1525868962 @default.
- W4387334890 hasRelatedWork W2328056206 @default.
- W4387334890 hasRelatedWork W2334323075 @default.