Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387335061> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4387335061 abstract "BACKGROUND CONTEXT Spinal pathologies are diverse in nature and, excluding trauma and degenerative diseases, includes infectious, neoplastic (either extradural or intradural) and inflammatory conditions. The preoperative diagnosis is made with clinical judgment incorporating lab findings and radiological studies. When the diagnosis is uncertain, a biopsy is almost always mandatory since the treatment is dictated by the type of pathology. This is an invasive, timely and costly process. PURPOSE The aim of this study was to develop a deep learning (DL) algorithm, based on preoperative MRI and post-operative pathological results, to differentiate between leading spinal pathologies. STUDY DESIGN We retrospectively collected and analyzed clinical, radiological, and pathological data of patients who underwent spinal surgery or biopsy for various spinal pathologies between 2008-2022 at a tertiary center. The patients were stratified according to their pathological reports (the threshold for inclusion was set to 25 patients per diagnosis). METHODS Preoperative MRI, clinical data and pathological results were processed by a deep learning model built on the Fast.ai framework on top of the PyTorch environment. RESULTS Two-hundred and thirty-one patients diagnosed with carcinoma (80), infection (57), meningioma (52) or schwannoma (42), were included in our model. The mean overall accuracy was 0.78±0.06 for the validation, and 0.93±0.03 for the test dataset. CONCLUSION DL algorithm for differentiation between the aforementioned spinal pathologies, based solely on clinical MRI, proves as a feasible primary diagnostic modality. Larger studies should be performed to validate and improve this algorithm for clinical use. CLINICAL SIGNIFICANCE This study provides a proof-of-concept for predicting spinal pathologies solely by MRI based DL technology, allowing for a rapid, targeted and cost-effective work-up and subsequent treatment." @default.
- W4387335061 created "2023-10-05" @default.
- W4387335061 creator A5017553397 @default.
- W4387335061 creator A5018687454 @default.
- W4387335061 creator A5040044870 @default.
- W4387335061 creator A5040917414 @default.
- W4387335061 creator A5041694742 @default.
- W4387335061 creator A5073606939 @default.
- W4387335061 creator A5093000950 @default.
- W4387335061 creator A5093000951 @default.
- W4387335061 creator A5093000952 @default.
- W4387335061 creator A5093000953 @default.
- W4387335061 date "2023-10-01" @default.
- W4387335061 modified "2023-10-07" @default.
- W4387335061 title "Differentiating Spinal Pathologies by Deep Learning Approach" @default.
- W4387335061 cites W1425803975 @default.
- W4387335061 cites W2127890285 @default.
- W4387335061 cites W2221930818 @default.
- W4387335061 cites W2315436431 @default.
- W4387335061 cites W2592929672 @default.
- W4387335061 cites W2601810159 @default.
- W4387335061 cites W2779401075 @default.
- W4387335061 cites W2885065241 @default.
- W4387335061 cites W2905810301 @default.
- W4387335061 cites W2919624876 @default.
- W4387335061 cites W2992085171 @default.
- W4387335061 cites W3006436762 @default.
- W4387335061 cites W3017303228 @default.
- W4387335061 cites W3020975691 @default.
- W4387335061 cites W3036319923 @default.
- W4387335061 cites W3102564565 @default.
- W4387335061 cites W3105282616 @default.
- W4387335061 cites W3165536503 @default.
- W4387335061 cites W3183868427 @default.
- W4387335061 cites W4221046554 @default.
- W4387335061 cites W4282926620 @default.
- W4387335061 cites W4361867784 @default.
- W4387335061 doi "https://doi.org/10.1016/j.spinee.2023.09.019" @default.
- W4387335061 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37797840" @default.
- W4387335061 hasPublicationYear "2023" @default.
- W4387335061 type Work @default.
- W4387335061 citedByCount "0" @default.
- W4387335061 crossrefType "journal-article" @default.
- W4387335061 hasAuthorship W4387335061A5017553397 @default.
- W4387335061 hasAuthorship W4387335061A5018687454 @default.
- W4387335061 hasAuthorship W4387335061A5040044870 @default.
- W4387335061 hasAuthorship W4387335061A5040917414 @default.
- W4387335061 hasAuthorship W4387335061A5041694742 @default.
- W4387335061 hasAuthorship W4387335061A5073606939 @default.
- W4387335061 hasAuthorship W4387335061A5093000950 @default.
- W4387335061 hasAuthorship W4387335061A5093000951 @default.
- W4387335061 hasAuthorship W4387335061A5093000952 @default.
- W4387335061 hasAuthorship W4387335061A5093000953 @default.
- W4387335061 hasBestOaLocation W43873350611 @default.
- W4387335061 hasConcept C126838900 @default.
- W4387335061 hasConcept C142724271 @default.
- W4387335061 hasConcept C151730666 @default.
- W4387335061 hasConcept C190892606 @default.
- W4387335061 hasConcept C207886595 @default.
- W4387335061 hasConcept C2775934546 @default.
- W4387335061 hasConcept C2779343474 @default.
- W4387335061 hasConcept C2781447767 @default.
- W4387335061 hasConcept C71924100 @default.
- W4387335061 hasConcept C86803240 @default.
- W4387335061 hasConceptScore W4387335061C126838900 @default.
- W4387335061 hasConceptScore W4387335061C142724271 @default.
- W4387335061 hasConceptScore W4387335061C151730666 @default.
- W4387335061 hasConceptScore W4387335061C190892606 @default.
- W4387335061 hasConceptScore W4387335061C207886595 @default.
- W4387335061 hasConceptScore W4387335061C2775934546 @default.
- W4387335061 hasConceptScore W4387335061C2779343474 @default.
- W4387335061 hasConceptScore W4387335061C2781447767 @default.
- W4387335061 hasConceptScore W4387335061C71924100 @default.
- W4387335061 hasConceptScore W4387335061C86803240 @default.
- W4387335061 hasLocation W43873350611 @default.
- W4387335061 hasLocation W43873350612 @default.
- W4387335061 hasOpenAccess W4387335061 @default.
- W4387335061 hasPrimaryLocation W43873350611 @default.
- W4387335061 hasRelatedWork W1524191831 @default.
- W4387335061 hasRelatedWork W1935823578 @default.
- W4387335061 hasRelatedWork W2031600237 @default.
- W4387335061 hasRelatedWork W2037055773 @default.
- W4387335061 hasRelatedWork W2044903109 @default.
- W4387335061 hasRelatedWork W2346302307 @default.
- W4387335061 hasRelatedWork W2404923637 @default.
- W4387335061 hasRelatedWork W2413997662 @default.
- W4387335061 hasRelatedWork W299246606 @default.
- W4387335061 hasRelatedWork W3103399627 @default.
- W4387335061 isParatext "false" @default.
- W4387335061 isRetracted "false" @default.
- W4387335061 workType "article" @default.