Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387335087> ?p ?o ?g. }
- W4387335087 endingPage "110894" @default.
- W4387335087 startingPage "110894" @default.
- W4387335087 abstract "De-clustering the seismic catalog is one of the crucial processes in determining the probability of exceeding ground motions at particular locations. Removing dependent events, such as foreshocks and aftershocks generated from mainshocks, from an earthquake catalog is known as seismicity de-clustering. This paper presents a new approach to classify seismicity using a swarm intelligence technique called the memory-guided Aquila optimizer (MGAOA). Aquila optimization is a recently reported yet popular optimization algorithm inspired by the hunting process of Aquila. In MGAOA, the Aquila searches for the prey based on the personal best history stored in the memory element, which helps MGAOA to converge faster and maintain the balance between exploration and exploitation during local and global search procedures. The search-controlled parameter is further integrated with Aquila optimization to enhance the exploitation phase of the algorithm. The effectiveness of the proposed MGAO is tested on twenty-three classical test functions and ten benchmark test suites of IEEE CEC 2021. The results show that the proposed MGAOA outperforms other algorithms regarding performance metrics and statistical tests. The MGAOA is applied to solve the problem of seismicity de-clustering using the nearest neighbor distance (NND). The NND is a widely used parameter for seismicity and consists of space–time-magnitude information. The MGAOA-based de-clustering model is used to identify the seismic clusters in highly active earthquake-prone Himalayas, California, Japan, and Indonesia regions. The results obtained by the proposed model are compared with state-of-the-art de-clustering techniques and other memory-guided swarm intelligence techniques. The obtained results in terms of aftershocks and backgrounds are evaluated with the help of cumulative plot, λ-plot, space–time plot, inter-event time versus inter-event distance plot, and statistical parameters like coefficient of variance, which show that the proposed model efficiently detects the seismic clusters, and outperforms other benchmark de-clustering techniques." @default.
- W4387335087 created "2023-10-05" @default.
- W4387335087 creator A5001748232 @default.
- W4387335087 creator A5075396860 @default.
- W4387335087 date "2023-11-01" @default.
- W4387335087 modified "2023-10-18" @default.
- W4387335087 title "Memory guided Aquila optimization algorithm with controlled search mechanism for seismicity analysis of earthquake prone regions" @default.
- W4387335087 cites W1595159159 @default.
- W4387335087 cites W1995276147 @default.
- W4387335087 cites W1996307217 @default.
- W4387335087 cites W1999927320 @default.
- W4387335087 cites W2028944227 @default.
- W4387335087 cites W2038304448 @default.
- W4387335087 cites W2058951418 @default.
- W4387335087 cites W2061438946 @default.
- W4387335087 cites W2076072287 @default.
- W4387335087 cites W2076408892 @default.
- W4387335087 cites W2100545784 @default.
- W4387335087 cites W2123260648 @default.
- W4387335087 cites W2135101868 @default.
- W4387335087 cites W2138537392 @default.
- W4387335087 cites W2143420231 @default.
- W4387335087 cites W2292057472 @default.
- W4387335087 cites W2317030246 @default.
- W4387335087 cites W2512179842 @default.
- W4387335087 cites W2520217198 @default.
- W4387335087 cites W2529809256 @default.
- W4387335087 cites W2546720092 @default.
- W4387335087 cites W2586349765 @default.
- W4387335087 cites W2594420594 @default.
- W4387335087 cites W2606879267 @default.
- W4387335087 cites W2749640392 @default.
- W4387335087 cites W2762410434 @default.
- W4387335087 cites W2769893710 @default.
- W4387335087 cites W2790662215 @default.
- W4387335087 cites W2943857514 @default.
- W4387335087 cites W2946470855 @default.
- W4387335087 cites W2947268877 @default.
- W4387335087 cites W2967907757 @default.
- W4387335087 cites W2972373936 @default.
- W4387335087 cites W2977128525 @default.
- W4387335087 cites W2981433841 @default.
- W4387335087 cites W2991045609 @default.
- W4387335087 cites W3021635086 @default.
- W4387335087 cites W3022309749 @default.
- W4387335087 cites W3032795379 @default.
- W4387335087 cites W3046319801 @default.
- W4387335087 cites W3046470293 @default.
- W4387335087 cites W3088484128 @default.
- W4387335087 cites W3088886016 @default.
- W4387335087 cites W3120063751 @default.
- W4387335087 cites W3120529348 @default.
- W4387335087 cites W3139484821 @default.
- W4387335087 cites W3155222578 @default.
- W4387335087 cites W3163903840 @default.
- W4387335087 cites W3174893268 @default.
- W4387335087 cites W3178986468 @default.
- W4387335087 cites W3192254112 @default.
- W4387335087 cites W3195454097 @default.
- W4387335087 cites W3197514732 @default.
- W4387335087 cites W3198509855 @default.
- W4387335087 cites W3207548384 @default.
- W4387335087 cites W4205136287 @default.
- W4387335087 cites W4210770341 @default.
- W4387335087 cites W4213013042 @default.
- W4387335087 cites W4213424482 @default.
- W4387335087 cites W4220876235 @default.
- W4387335087 cites W4220975527 @default.
- W4387335087 cites W4223501034 @default.
- W4387335087 cites W4250503569 @default.
- W4387335087 cites W4280497196 @default.
- W4387335087 cites W4283779771 @default.
- W4387335087 cites W4287834629 @default.
- W4387335087 cites W4293694571 @default.
- W4387335087 cites W4308032603 @default.
- W4387335087 cites W4309441548 @default.
- W4387335087 cites W4309572583 @default.
- W4387335087 cites W883434633 @default.
- W4387335087 doi "https://doi.org/10.1016/j.asoc.2023.110894" @default.
- W4387335087 hasPublicationYear "2023" @default.
- W4387335087 type Work @default.
- W4387335087 citedByCount "0" @default.
- W4387335087 crossrefType "journal-article" @default.
- W4387335087 hasAuthorship W4387335087A5001748232 @default.
- W4387335087 hasAuthorship W4387335087A5075396860 @default.
- W4387335087 hasBestOaLocation W43873350871 @default.
- W4387335087 hasConcept C11413529 @default.
- W4387335087 hasConcept C124101348 @default.
- W4387335087 hasConcept C127313418 @default.
- W4387335087 hasConcept C13280743 @default.
- W4387335087 hasConcept C154945302 @default.
- W4387335087 hasConcept C156801008 @default.
- W4387335087 hasConcept C165205528 @default.
- W4387335087 hasConcept C185798385 @default.
- W4387335087 hasConcept C41008148 @default.
- W4387335087 hasConcept C73555534 @default.
- W4387335087 hasConcept C83176761 @default.
- W4387335087 hasConceptScore W4387335087C11413529 @default.