Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387336075> ?p ?o ?g. }
- W4387336075 abstract "The improvement of fault prediction and diagnosis in industrial systems is crucial to minimize unscheduled shutdowns. However, the predictive performance of current models for thermal power plants is limited due to their reliance on single algorithm approaches. Furthermore, there is a shortage of experiments on thermal fired power plant equipment, as most research focuses on nuclear power plants. In this study, we propose a fault predictive stacking approach for a thermal power plant induced draft fan and evaluate the performance of base learners, including Support Vector Machines (SVM), K Nearest Neighbors (KNN), and Random Forests (RF). Our proposed stacking ensemble approach achieved a higher prediction accuracy of 99.89% compared to the base algorithms. Additionally, the stacking ensemble method showed superior prediction performance compared to the base methods." @default.
- W4387336075 created "2023-10-05" @default.
- W4387336075 creator A5079278371 @default.
- W4387336075 creator A5081100614 @default.
- W4387336075 creator A5086999378 @default.
- W4387336075 date "2023-10-01" @default.
- W4387336075 modified "2023-10-12" @default.
- W4387336075 title "Power Plant Induced-Draft Fan Fault Prediction using Machine Learning Stacking Ensemble" @default.
- W4387336075 cites W1967297168 @default.
- W4387336075 cites W1970090588 @default.
- W4387336075 cites W1975174639 @default.
- W4387336075 cites W1977185509 @default.
- W4387336075 cites W1999645011 @default.
- W4387336075 cites W2002840043 @default.
- W4387336075 cites W2021353881 @default.
- W4387336075 cites W2031530612 @default.
- W4387336075 cites W2045240677 @default.
- W4387336075 cites W2103165366 @default.
- W4387336075 cites W2127776238 @default.
- W4387336075 cites W2150757437 @default.
- W4387336075 cites W2167917621 @default.
- W4387336075 cites W2276506301 @default.
- W4387336075 cites W2591963602 @default.
- W4387336075 cites W2605438564 @default.
- W4387336075 cites W2781540443 @default.
- W4387336075 cites W2785511006 @default.
- W4387336075 cites W2791694051 @default.
- W4387336075 cites W2808548605 @default.
- W4387336075 cites W2883297597 @default.
- W4387336075 cites W2899231837 @default.
- W4387336075 cites W2911964244 @default.
- W4387336075 cites W2912687720 @default.
- W4387336075 cites W2957073331 @default.
- W4387336075 cites W2974811886 @default.
- W4387336075 cites W3010088906 @default.
- W4387336075 cites W3047606632 @default.
- W4387336075 cites W3122006997 @default.
- W4387336075 cites W3140171363 @default.
- W4387336075 cites W3150431878 @default.
- W4387336075 cites W3161484275 @default.
- W4387336075 cites W3170657538 @default.
- W4387336075 cites W4283012215 @default.
- W4387336075 doi "https://doi.org/10.1016/j.jer.2023.10.001" @default.
- W4387336075 hasPublicationYear "2023" @default.
- W4387336075 type Work @default.
- W4387336075 citedByCount "0" @default.
- W4387336075 crossrefType "journal-article" @default.
- W4387336075 hasAuthorship W4387336075A5079278371 @default.
- W4387336075 hasAuthorship W4387336075A5081100614 @default.
- W4387336075 hasAuthorship W4387336075A5086999378 @default.
- W4387336075 hasBestOaLocation W43873360751 @default.
- W4387336075 hasConcept C119599485 @default.
- W4387336075 hasConcept C119857082 @default.
- W4387336075 hasConcept C121332964 @default.
- W4387336075 hasConcept C12267149 @default.
- W4387336075 hasConcept C127313418 @default.
- W4387336075 hasConcept C127413603 @default.
- W4387336075 hasConcept C134306372 @default.
- W4387336075 hasConcept C138885662 @default.
- W4387336075 hasConcept C154945302 @default.
- W4387336075 hasConcept C163258240 @default.
- W4387336075 hasConcept C165205528 @default.
- W4387336075 hasConcept C169258074 @default.
- W4387336075 hasConcept C175551986 @default.
- W4387336075 hasConcept C178790620 @default.
- W4387336075 hasConcept C185592680 @default.
- W4387336075 hasConcept C194051981 @default.
- W4387336075 hasConcept C200601418 @default.
- W4387336075 hasConcept C2039551 @default.
- W4387336075 hasConcept C2778137410 @default.
- W4387336075 hasConcept C33347731 @default.
- W4387336075 hasConcept C33923547 @default.
- W4387336075 hasConcept C41008148 @default.
- W4387336075 hasConcept C41895202 @default.
- W4387336075 hasConcept C42058472 @default.
- W4387336075 hasConcept C45942800 @default.
- W4387336075 hasConcept C62520636 @default.
- W4387336075 hasConceptScore W4387336075C119599485 @default.
- W4387336075 hasConceptScore W4387336075C119857082 @default.
- W4387336075 hasConceptScore W4387336075C121332964 @default.
- W4387336075 hasConceptScore W4387336075C12267149 @default.
- W4387336075 hasConceptScore W4387336075C127313418 @default.
- W4387336075 hasConceptScore W4387336075C127413603 @default.
- W4387336075 hasConceptScore W4387336075C134306372 @default.
- W4387336075 hasConceptScore W4387336075C138885662 @default.
- W4387336075 hasConceptScore W4387336075C154945302 @default.
- W4387336075 hasConceptScore W4387336075C163258240 @default.
- W4387336075 hasConceptScore W4387336075C165205528 @default.
- W4387336075 hasConceptScore W4387336075C169258074 @default.
- W4387336075 hasConceptScore W4387336075C175551986 @default.
- W4387336075 hasConceptScore W4387336075C178790620 @default.
- W4387336075 hasConceptScore W4387336075C185592680 @default.
- W4387336075 hasConceptScore W4387336075C194051981 @default.
- W4387336075 hasConceptScore W4387336075C200601418 @default.
- W4387336075 hasConceptScore W4387336075C2039551 @default.
- W4387336075 hasConceptScore W4387336075C2778137410 @default.
- W4387336075 hasConceptScore W4387336075C33347731 @default.
- W4387336075 hasConceptScore W4387336075C33923547 @default.
- W4387336075 hasConceptScore W4387336075C41008148 @default.
- W4387336075 hasConceptScore W4387336075C41895202 @default.