Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387336552> ?p ?o ?g. }
- W4387336552 endingPage "112527" @default.
- W4387336552 startingPage "112527" @default.
- W4387336552 abstract "We consider the approximation of a class of dynamic partial differential equations (PDEs) of second order in time by the physics-informed neural network (PINN) approach, and provide an error analysis of PINN for the wave equation, the nonlinear Klein-Gordon equation and the linear elastodynamic equation. Our analyses show that, with feed-forward neural networks having two hidden layers and the tanh activation function, the PINN approximation errors for the solution field, its time derivative and its gradient field can be effectively bounded by the training loss and the number of training data points (quadrature points). Our analyses further suggest new forms for the training loss function, which contain certain residuals that are crucial to the error estimate but would be absent from the canonical PINN loss formulation. Adopting these new forms for the loss function leads to a variant PINN algorithm. We present ample numerical experiments with the new PINN algorithm for the wave equation, the Sine-Gordon equation and the linear elastodynamic equation, which show that the method can capture the solution well." @default.
- W4387336552 created "2023-10-05" @default.
- W4387336552 creator A5010363081 @default.
- W4387336552 creator A5031172482 @default.
- W4387336552 creator A5067104727 @default.
- W4387336552 creator A5086133674 @default.
- W4387336552 date "2023-12-01" @default.
- W4387336552 modified "2023-10-18" @default.
- W4387336552 title "Physics-Informed Neural Networks for Approximating Dynamic (Hyperbolic) PDEs of Second Order in Time: Error Analysis and Algorithms" @default.
- W4387336552 cites W2040474448 @default.
- W4387336552 cites W2045812925 @default.
- W4387336552 cites W2085232132 @default.
- W4387336552 cites W2087411333 @default.
- W4387336552 cites W2167113113 @default.
- W4387336552 cites W242422246 @default.
- W4387336552 cites W2510603421 @default.
- W4387336552 cites W2749028154 @default.
- W4387336552 cites W2754833785 @default.
- W4387336552 cites W2760972773 @default.
- W4387336552 cites W2887880955 @default.
- W4387336552 cites W2899283552 @default.
- W4387336552 cites W2912389156 @default.
- W4387336552 cites W2919115771 @default.
- W4387336552 cites W2964036789 @default.
- W4387336552 cites W2985622559 @default.
- W4387336552 cites W3014009018 @default.
- W4387336552 cites W3014468003 @default.
- W4387336552 cites W3015865829 @default.
- W4387336552 cites W3043516796 @default.
- W4387336552 cites W3088991477 @default.
- W4387336552 cites W3098546160 @default.
- W4387336552 cites W3102139197 @default.
- W4387336552 cites W3104183394 @default.
- W4387336552 cites W3112199937 @default.
- W4387336552 cites W3133816032 @default.
- W4387336552 cites W3136639013 @default.
- W4387336552 cites W3163993681 @default.
- W4387336552 cites W3176116059 @default.
- W4387336552 cites W3177136884 @default.
- W4387336552 cites W3181235980 @default.
- W4387336552 cites W3186608048 @default.
- W4387336552 cites W3194468165 @default.
- W4387336552 cites W3199775905 @default.
- W4387336552 cites W3202131078 @default.
- W4387336552 cites W3205073660 @default.
- W4387336552 cites W3206631416 @default.
- W4387336552 cites W3209585328 @default.
- W4387336552 cites W4212988227 @default.
- W4387336552 cites W4220785892 @default.
- W4387336552 cites W4221156459 @default.
- W4387336552 cites W4280647708 @default.
- W4387336552 cites W4281627930 @default.
- W4387336552 cites W4288039037 @default.
- W4387336552 cites W4297030794 @default.
- W4387336552 cites W4317434745 @default.
- W4387336552 cites W4379379581 @default.
- W4387336552 doi "https://doi.org/10.1016/j.jcp.2023.112527" @default.
- W4387336552 hasPublicationYear "2023" @default.
- W4387336552 type Work @default.
- W4387336552 citedByCount "0" @default.
- W4387336552 crossrefType "journal-article" @default.
- W4387336552 hasAuthorship W4387336552A5010363081 @default.
- W4387336552 hasAuthorship W4387336552A5031172482 @default.
- W4387336552 hasAuthorship W4387336552A5067104727 @default.
- W4387336552 hasAuthorship W4387336552A5086133674 @default.
- W4387336552 hasBestOaLocation W43873365521 @default.
- W4387336552 hasConcept C111615704 @default.
- W4387336552 hasConcept C11413529 @default.
- W4387336552 hasConcept C121332964 @default.
- W4387336552 hasConcept C134306372 @default.
- W4387336552 hasConcept C14036430 @default.
- W4387336552 hasConcept C154945302 @default.
- W4387336552 hasConcept C158622935 @default.
- W4387336552 hasConcept C17685861 @default.
- W4387336552 hasConcept C202444582 @default.
- W4387336552 hasConcept C28826006 @default.
- W4387336552 hasConcept C33923547 @default.
- W4387336552 hasConcept C34388435 @default.
- W4387336552 hasConcept C41008148 @default.
- W4387336552 hasConcept C50644808 @default.
- W4387336552 hasConcept C59696629 @default.
- W4387336552 hasConcept C62520636 @default.
- W4387336552 hasConcept C78458016 @default.
- W4387336552 hasConcept C86803240 @default.
- W4387336552 hasConcept C91873725 @default.
- W4387336552 hasConcept C92047909 @default.
- W4387336552 hasConcept C93779851 @default.
- W4387336552 hasConcept C9652623 @default.
- W4387336552 hasConceptScore W4387336552C111615704 @default.
- W4387336552 hasConceptScore W4387336552C11413529 @default.
- W4387336552 hasConceptScore W4387336552C121332964 @default.
- W4387336552 hasConceptScore W4387336552C134306372 @default.
- W4387336552 hasConceptScore W4387336552C14036430 @default.
- W4387336552 hasConceptScore W4387336552C154945302 @default.
- W4387336552 hasConceptScore W4387336552C158622935 @default.
- W4387336552 hasConceptScore W4387336552C17685861 @default.
- W4387336552 hasConceptScore W4387336552C202444582 @default.
- W4387336552 hasConceptScore W4387336552C28826006 @default.