Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387339852> ?p ?o ?g. }
- W4387339852 endingPage "104510" @default.
- W4387339852 startingPage "104510" @default.
- W4387339852 abstract "Single-cell RNA sequencing experiments produce data useful to identify different cell types, including uncharacterized and rare ones. This enables us to study the specific functional roles of these cells in different microenvironments and contexts. After identifying a (novel) cell type of interest, it is essential to build succinct marker panels, composed of a few genes referring to cell surface proteins and clusters of differentiation molecules, able to discriminate the desired cells from the other cell populations. In this work, we propose a fully-automatic framework called MAGNETO, which can help construct optimal marker panels starting from a single-cell gene expression matrix and a cell type identity for each cell. MAGNETO builds effective marker panels solving a tailored bi-objective optimization problem, where the first objective regards the identification of the genes able to isolate a specific cell type, while the second conflicting objective concerns the minimization of the total number of genes included in the panel. Our results on three public datasets show that MAGNETO can identify marker panels that identify the cell populations of interest better than state-of-the-art approaches. Finally, by fine-tuning MAGNETO, our results demonstrate that it is possible to obtain marker panels with different specificity levels." @default.
- W4387339852 created "2023-10-05" @default.
- W4387339852 creator A5013723473 @default.
- W4387339852 creator A5043006240 @default.
- W4387339852 creator A5048988375 @default.
- W4387339852 creator A5056055676 @default.
- W4387339852 creator A5061715518 @default.
- W4387339852 date "2023-11-01" @default.
- W4387339852 modified "2023-10-12" @default.
- W4387339852 title "MAGNETO: Cell type marker panel generator from single-cell transcriptomic data" @default.
- W4387339852 cites W130515558 @default.
- W4387339852 cites W1521262132 @default.
- W4387339852 cites W1560092366 @default.
- W4387339852 cites W1678352491 @default.
- W4387339852 cites W2010220058 @default.
- W4387339852 cites W2012034410 @default.
- W4387339852 cites W2020320008 @default.
- W4387339852 cites W2038420231 @default.
- W4387339852 cites W2052750525 @default.
- W4387339852 cites W2061536528 @default.
- W4387339852 cites W2067935382 @default.
- W4387339852 cites W2068767807 @default.
- W4387339852 cites W2069089843 @default.
- W4387339852 cites W2115736737 @default.
- W4387339852 cites W2126105956 @default.
- W4387339852 cites W2136027447 @default.
- W4387339852 cites W2177432730 @default.
- W4387339852 cites W2190545194 @default.
- W4387339852 cites W2342249984 @default.
- W4387339852 cites W2461073387 @default.
- W4387339852 cites W2472063172 @default.
- W4387339852 cites W2510746232 @default.
- W4387339852 cites W2523369352 @default.
- W4387339852 cites W2523620612 @default.
- W4387339852 cites W2526262591 @default.
- W4387339852 cites W2551194178 @default.
- W4387339852 cites W2602123787 @default.
- W4387339852 cites W2602584217 @default.
- W4387339852 cites W2605810679 @default.
- W4387339852 cites W2622807556 @default.
- W4387339852 cites W2756260525 @default.
- W4387339852 cites W2792649309 @default.
- W4387339852 cites W2794480084 @default.
- W4387339852 cites W2800392236 @default.
- W4387339852 cites W2806983506 @default.
- W4387339852 cites W2895090555 @default.
- W4387339852 cites W2895456557 @default.
- W4387339852 cites W2900144939 @default.
- W4387339852 cites W2901006884 @default.
- W4387339852 cites W2937804259 @default.
- W4387339852 cites W2946085841 @default.
- W4387339852 cites W2949177718 @default.
- W4387339852 cites W2949237386 @default.
- W4387339852 cites W2952923426 @default.
- W4387339852 cites W2953831633 @default.
- W4387339852 cites W2970055262 @default.
- W4387339852 cites W2982231537 @default.
- W4387339852 cites W2988773550 @default.
- W4387339852 cites W2998127407 @default.
- W4387339852 cites W3005127469 @default.
- W4387339852 cites W3016676496 @default.
- W4387339852 cites W3094147504 @default.
- W4387339852 cites W3094585864 @default.
- W4387339852 cites W3131383906 @default.
- W4387339852 cites W3164692211 @default.
- W4387339852 cites W3166637187 @default.
- W4387339852 cites W4220901780 @default.
- W4387339852 cites W4280578638 @default.
- W4387339852 cites W4285090748 @default.
- W4387339852 cites W4290648831 @default.
- W4387339852 doi "https://doi.org/10.1016/j.jbi.2023.104510" @default.
- W4387339852 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37797704" @default.
- W4387339852 hasPublicationYear "2023" @default.
- W4387339852 type Work @default.
- W4387339852 citedByCount "0" @default.
- W4387339852 crossrefType "journal-article" @default.
- W4387339852 hasAuthorship W4387339852A5013723473 @default.
- W4387339852 hasAuthorship W4387339852A5043006240 @default.
- W4387339852 hasAuthorship W4387339852A5048988375 @default.
- W4387339852 hasAuthorship W4387339852A5056055676 @default.
- W4387339852 hasAuthorship W4387339852A5061715518 @default.
- W4387339852 hasBestOaLocation W43873398521 @default.
- W4387339852 hasConcept C104317684 @default.
- W4387339852 hasConcept C116834253 @default.
- W4387339852 hasConcept C121332964 @default.
- W4387339852 hasConcept C1491633281 @default.
- W4387339852 hasConcept C163258240 @default.
- W4387339852 hasConcept C189014844 @default.
- W4387339852 hasConcept C199360897 @default.
- W4387339852 hasConcept C2780801425 @default.
- W4387339852 hasConcept C2780992000 @default.
- W4387339852 hasConcept C41008148 @default.
- W4387339852 hasConcept C54355233 @default.
- W4387339852 hasConcept C59822182 @default.
- W4387339852 hasConcept C62520636 @default.
- W4387339852 hasConcept C66746571 @default.
- W4387339852 hasConcept C70721500 @default.
- W4387339852 hasConcept C86803240 @default.