Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387339939> ?p ?o ?g. }
- W4387339939 endingPage "102964" @default.
- W4387339939 startingPage "102964" @default.
- W4387339939 abstract "The degradation of systems in service, including pipelines, over time highlights the critical need for reliable and accurate defect detection to ensure safe operations. However, single modality-based Nondestructive Evaluation (NDE) data used in practical applications often suffers from noise contamination and errors caused by various factors like lift-off/standoff distances, probe drift, scanning speed, variation in data acquisition rates, and poor sensor sensitivity. The presence of agnostic noise types poses a challenge in extracting defect signals. To address these challenges, this paper presents an automated NDE theory-based data fusion framework aimed at enhancing the detection of surface and near-surface defects in magnetizable and conductive specimens. The Magnetic Flux Leakage (MFL) and Eddy Current (EC) based NDE sensing methods demonstrate the highly heterogeneous nature of noise distributions. Given the heterogeneity of the inspection methods, a screening rule is proposed to determine the conditions under which fusion would be beneficial. An important aspect of the proposed fusion method is registration, which ensures accurate alignment of multi-sensor image data. Two registration methods are proposed in this study as performing blind fusion without registration leads to erroneous results. The first registration method is translational, whereas the second method is registration based on linear optimal transport (OT) which proves to be effective in the boundary conditions. Finally, the registered source images from the EC and MFL modalities are fused using pixel-based fusion algorithms, including transform domain and spatial domain-based methods. Qualitative and quantitative assessments demonstrate that the registered fusion results exhibit higher accuracy and reliability compared to unregistered fused results and source images. Although the fusion method is applied to MFL and EC data in this paper, it is also suitable for other NDE modalities." @default.
- W4387339939 created "2023-10-05" @default.
- W4387339939 creator A5025525711 @default.
- W4387339939 creator A5038156066 @default.
- W4387339939 creator A5040706857 @default.
- W4387339939 creator A5063095462 @default.
- W4387339939 creator A5090893424 @default.
- W4387339939 date "2023-10-01" @default.
- W4387339939 modified "2023-10-06" @default.
- W4387339939 title "Enhanced defect detection in NDE using registration aided heterogeneous data fusion" @default.
- W4387339939 cites W1665445158 @default.
- W4387339939 cites W1753775462 @default.
- W4387339939 cites W1970758811 @default.
- W4387339939 cites W1975341012 @default.
- W4387339939 cites W1980382026 @default.
- W4387339939 cites W1985687028 @default.
- W4387339939 cites W2003535531 @default.
- W4387339939 cites W2006094958 @default.
- W4387339939 cites W2014306971 @default.
- W4387339939 cites W2017653790 @default.
- W4387339939 cites W2025001681 @default.
- W4387339939 cites W2026974073 @default.
- W4387339939 cites W2038628658 @default.
- W4387339939 cites W2052424080 @default.
- W4387339939 cites W2055223904 @default.
- W4387339939 cites W2064689654 @default.
- W4387339939 cites W2081321639 @default.
- W4387339939 cites W2094947400 @default.
- W4387339939 cites W2119024786 @default.
- W4387339939 cites W2131745541 @default.
- W4387339939 cites W2132883347 @default.
- W4387339939 cites W2142776277 @default.
- W4387339939 cites W2158940042 @default.
- W4387339939 cites W2160910572 @default.
- W4387339939 cites W2160975985 @default.
- W4387339939 cites W2163009106 @default.
- W4387339939 cites W2168783614 @default.
- W4387339939 cites W2190662802 @default.
- W4387339939 cites W2233437058 @default.
- W4387339939 cites W2328039890 @default.
- W4387339939 cites W2532801510 @default.
- W4387339939 cites W2535722241 @default.
- W4387339939 cites W2609795893 @default.
- W4387339939 cites W2941426703 @default.
- W4387339939 cites W2998346101 @default.
- W4387339939 cites W3083821279 @default.
- W4387339939 cites W4282946043 @default.
- W4387339939 cites W4289831538 @default.
- W4387339939 doi "https://doi.org/10.1016/j.ndteint.2023.102964" @default.
- W4387339939 hasPublicationYear "2023" @default.
- W4387339939 type Work @default.
- W4387339939 citedByCount "0" @default.
- W4387339939 crossrefType "journal-article" @default.
- W4387339939 hasAuthorship W4387339939A5025525711 @default.
- W4387339939 hasAuthorship W4387339939A5038156066 @default.
- W4387339939 hasAuthorship W4387339939A5040706857 @default.
- W4387339939 hasAuthorship W4387339939A5063095462 @default.
- W4387339939 hasAuthorship W4387339939A5090893424 @default.
- W4387339939 hasBestOaLocation W43873399391 @default.
- W4387339939 hasConcept C115961682 @default.
- W4387339939 hasConcept C124101348 @default.
- W4387339939 hasConcept C127413603 @default.
- W4387339939 hasConcept C153180895 @default.
- W4387339939 hasConcept C154945302 @default.
- W4387339939 hasConcept C16389437 @default.
- W4387339939 hasConcept C166704113 @default.
- W4387339939 hasConcept C20892748 @default.
- W4387339939 hasConcept C31972630 @default.
- W4387339939 hasConcept C33954974 @default.
- W4387339939 hasConcept C41008148 @default.
- W4387339939 hasConcept C69744172 @default.
- W4387339939 hasConcept C78519656 @default.
- W4387339939 hasConcept C99498987 @default.
- W4387339939 hasConceptScore W4387339939C115961682 @default.
- W4387339939 hasConceptScore W4387339939C124101348 @default.
- W4387339939 hasConceptScore W4387339939C127413603 @default.
- W4387339939 hasConceptScore W4387339939C153180895 @default.
- W4387339939 hasConceptScore W4387339939C154945302 @default.
- W4387339939 hasConceptScore W4387339939C16389437 @default.
- W4387339939 hasConceptScore W4387339939C166704113 @default.
- W4387339939 hasConceptScore W4387339939C20892748 @default.
- W4387339939 hasConceptScore W4387339939C31972630 @default.
- W4387339939 hasConceptScore W4387339939C33954974 @default.
- W4387339939 hasConceptScore W4387339939C41008148 @default.
- W4387339939 hasConceptScore W4387339939C69744172 @default.
- W4387339939 hasConceptScore W4387339939C78519656 @default.
- W4387339939 hasConceptScore W4387339939C99498987 @default.
- W4387339939 hasLocation W43873399391 @default.
- W4387339939 hasOpenAccess W4387339939 @default.
- W4387339939 hasPrimaryLocation W43873399391 @default.
- W4387339939 hasRelatedWork W2009466720 @default.
- W4387339939 hasRelatedWork W2011443206 @default.
- W4387339939 hasRelatedWork W2041698670 @default.
- W4387339939 hasRelatedWork W2114100766 @default.
- W4387339939 hasRelatedWork W2125070361 @default.
- W4387339939 hasRelatedWork W2419576664 @default.
- W4387339939 hasRelatedWork W3007420330 @default.
- W4387339939 hasRelatedWork W3163375306 @default.