Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387340419> ?p ?o ?g. }
- W4387340419 endingPage "104231" @default.
- W4387340419 startingPage "104231" @default.
- W4387340419 abstract "In this paper, the problem of phase retrieval is addressed. Its solution is based on the Lagrange programming neural network (LPNN), which is an analog neural computational technique for solving nonlinear constrained optimization problems according to the Lagrange multiplier theory. The local stability of the proposed algorithm is also investigated. Furthermore, we extend the LPNN based approach to more challenging array signal processing applications, namely, when multiple vector signals with full column rank or other constraints are required to be recovered from measured magnitudes. One of the key difficulties for these challenges is pairing the separately estimated parameters, while the parameters estimated by the extended method are automatically paired. The performance of the developed algorithms is demonstrated via computer simulations." @default.
- W4387340419 created "2023-10-05" @default.
- W4387340419 creator A5013252013 @default.
- W4387340419 creator A5014063618 @default.
- W4387340419 creator A5053893418 @default.
- W4387340419 creator A5080383317 @default.
- W4387340419 creator A5082563150 @default.
- W4387340419 date "2023-11-01" @default.
- W4387340419 modified "2023-10-18" @default.
- W4387340419 title "Phase Retrieval via Lagrange Programming Neural Network" @default.
- W4387340419 cites W1621341996 @default.
- W4387340419 cites W1977384542 @default.
- W4387340419 cites W1980207347 @default.
- W4387340419 cites W1996215314 @default.
- W4387340419 cites W2007593159 @default.
- W4387340419 cites W2013419672 @default.
- W4387340419 cites W2046108315 @default.
- W4387340419 cites W2065810244 @default.
- W4387340419 cites W2078397124 @default.
- W4387340419 cites W2087483236 @default.
- W4387340419 cites W2091038242 @default.
- W4387340419 cites W2095072097 @default.
- W4387340419 cites W2102019642 @default.
- W4387340419 cites W2115757243 @default.
- W4387340419 cites W2123487169 @default.
- W4387340419 cites W2137743180 @default.
- W4387340419 cites W2145080587 @default.
- W4387340419 cites W2192951225 @default.
- W4387340419 cites W2228046375 @default.
- W4387340419 cites W2237941226 @default.
- W4387340419 cites W2279373238 @default.
- W4387340419 cites W2298042388 @default.
- W4387340419 cites W2494798456 @default.
- W4387340419 cites W2508241247 @default.
- W4387340419 cites W2619475731 @default.
- W4387340419 cites W2914090143 @default.
- W4387340419 cites W2967138144 @default.
- W4387340419 cites W3007493423 @default.
- W4387340419 cites W3007871380 @default.
- W4387340419 cites W3038139469 @default.
- W4387340419 cites W3084468495 @default.
- W4387340419 cites W3100992968 @default.
- W4387340419 cites W3102206315 @default.
- W4387340419 cites W3150411600 @default.
- W4387340419 cites W3172441423 @default.
- W4387340419 cites W3180459991 @default.
- W4387340419 cites W3193607969 @default.
- W4387340419 cites W3194343175 @default.
- W4387340419 cites W3208187232 @default.
- W4387340419 cites W3212165040 @default.
- W4387340419 cites W4205355701 @default.
- W4387340419 cites W4225712686 @default.
- W4387340419 cites W4226377533 @default.
- W4387340419 cites W4312430799 @default.
- W4387340419 cites W4361807286 @default.
- W4387340419 doi "https://doi.org/10.1016/j.dsp.2023.104231" @default.
- W4387340419 hasPublicationYear "2023" @default.
- W4387340419 type Work @default.
- W4387340419 citedByCount "0" @default.
- W4387340419 crossrefType "journal-article" @default.
- W4387340419 hasAuthorship W4387340419A5013252013 @default.
- W4387340419 hasAuthorship W4387340419A5014063618 @default.
- W4387340419 hasAuthorship W4387340419A5053893418 @default.
- W4387340419 hasAuthorship W4387340419A5080383317 @default.
- W4387340419 hasAuthorship W4387340419A5082563150 @default.
- W4387340419 hasConcept C104267543 @default.
- W4387340419 hasConcept C112972136 @default.
- W4387340419 hasConcept C11413529 @default.
- W4387340419 hasConcept C114614502 @default.
- W4387340419 hasConcept C115527620 @default.
- W4387340419 hasConcept C119857082 @default.
- W4387340419 hasConcept C121332964 @default.
- W4387340419 hasConcept C126255220 @default.
- W4387340419 hasConcept C14103023 @default.
- W4387340419 hasConcept C154945302 @default.
- W4387340419 hasConcept C158622935 @default.
- W4387340419 hasConcept C15980293 @default.
- W4387340419 hasConcept C164226766 @default.
- W4387340419 hasConcept C26517878 @default.
- W4387340419 hasConcept C33923547 @default.
- W4387340419 hasConcept C38652104 @default.
- W4387340419 hasConcept C41008148 @default.
- W4387340419 hasConcept C50644808 @default.
- W4387340419 hasConcept C54101563 @default.
- W4387340419 hasConcept C62520636 @default.
- W4387340419 hasConcept C73684929 @default.
- W4387340419 hasConcept C84462506 @default.
- W4387340419 hasConcept C9390403 @default.
- W4387340419 hasConceptScore W4387340419C104267543 @default.
- W4387340419 hasConceptScore W4387340419C112972136 @default.
- W4387340419 hasConceptScore W4387340419C11413529 @default.
- W4387340419 hasConceptScore W4387340419C114614502 @default.
- W4387340419 hasConceptScore W4387340419C115527620 @default.
- W4387340419 hasConceptScore W4387340419C119857082 @default.
- W4387340419 hasConceptScore W4387340419C121332964 @default.
- W4387340419 hasConceptScore W4387340419C126255220 @default.
- W4387340419 hasConceptScore W4387340419C14103023 @default.
- W4387340419 hasConceptScore W4387340419C154945302 @default.