Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387342012> ?p ?o ?g. }
- W4387342012 abstract "Recently, hydrogen (H2) gas has gained prodigious attention as a sustainable energy carrier to reduce acute dependence on fossil fuels due to its fascinating properties. To ensure it continuous availability, hydrogen storage in underground geologic formations has been proffered. Nonetheless, H2 storage in underground formations is dependent on fluid-fluid interfacial tension (IFT). Herein, new-generation machine learning models namely Gaussian Process Regression (GPR), the Elman Neural Network (ENN), and the Logistic Regression (LR) were used to predict the IFT of the H2-brine system. For this purpose, the includes temperature (T), pressure (p), and density difference (Δρ), with the surface tension (γ) as the output variable. The effectiveness of each model was assessed through a variety of metrics including the Nash-Sutcliffe efficiency (NSE), the Mean Absolute Error (MAE), the Mean Absolute Percentage Error (MAPE), the Correlation Coefficient (PCC), the Root Mean Square Error (RMSE), and BIAS. Moreover, the limitations of traditional chemometrics feature extraction was overcome by utilizing an original linear matrix input-output (M1-M3) feature extraction approach. The result generated demonstrates that the suggested models and correlation offer sterling IFT estimations. The Gaussian Process Regression (GPR) model outperformed the other evaluated machine learning methods. Particularly, the GPR-M2 model combination showed extraordinary effectiveness, outperforming the BTA-M1 model, which had the lowest performance by 22%. Numerical comparison indicated that GPR-M2 with MAPE = 0.0512, and MAE = 0.002 emerged as the best reliable model. This study extends the frontier of knowledge in achieving carbon-free and sustainable energy society via accurate IFT prediction of H2-brine system." @default.
- W4387342012 created "2023-10-05" @default.
- W4387342012 creator A5032669797 @default.
- W4387342012 creator A5037540489 @default.
- W4387342012 creator A5044382284 @default.
- W4387342012 creator A5062007467 @default.
- W4387342012 creator A5062319500 @default.
- W4387342012 creator A5064315131 @default.
- W4387342012 creator A5069317254 @default.
- W4387342012 creator A5072286524 @default.
- W4387342012 creator A5086759595 @default.
- W4387342012 date "2023-10-01" @default.
- W4387342012 modified "2023-10-06" @default.
- W4387342012 title "New-generation machine learning models as prediction tools for modeling interfacial tension of hydrogen-brine system" @default.
- W4387342012 cites W2090534961 @default.
- W4387342012 cites W2794371901 @default.
- W4387342012 cites W2901048536 @default.
- W4387342012 cites W2991583056 @default.
- W4387342012 cites W3017885413 @default.
- W4387342012 cites W3112279700 @default.
- W4387342012 cites W3120326692 @default.
- W4387342012 cites W3128474450 @default.
- W4387342012 cites W3138301270 @default.
- W4387342012 cites W3139569360 @default.
- W4387342012 cites W3165274005 @default.
- W4387342012 cites W3173855053 @default.
- W4387342012 cites W4200344755 @default.
- W4387342012 cites W4200362641 @default.
- W4387342012 cites W4221124994 @default.
- W4387342012 cites W4280563520 @default.
- W4387342012 cites W4285040342 @default.
- W4387342012 cites W4286298160 @default.
- W4387342012 cites W4291197342 @default.
- W4387342012 cites W4292509493 @default.
- W4387342012 cites W4293340313 @default.
- W4387342012 cites W4294733719 @default.
- W4387342012 cites W4306156680 @default.
- W4387342012 cites W4306856308 @default.
- W4387342012 cites W4311255578 @default.
- W4387342012 cites W4367189127 @default.
- W4387342012 cites W4380624215 @default.
- W4387342012 cites W4385076512 @default.
- W4387342012 doi "https://doi.org/10.1016/j.ijhydene.2023.09.170" @default.
- W4387342012 hasPublicationYear "2023" @default.
- W4387342012 type Work @default.
- W4387342012 citedByCount "0" @default.
- W4387342012 crossrefType "journal-article" @default.
- W4387342012 hasAuthorship W4387342012A5032669797 @default.
- W4387342012 hasAuthorship W4387342012A5037540489 @default.
- W4387342012 hasAuthorship W4387342012A5044382284 @default.
- W4387342012 hasAuthorship W4387342012A5062007467 @default.
- W4387342012 hasAuthorship W4387342012A5062319500 @default.
- W4387342012 hasAuthorship W4387342012A5064315131 @default.
- W4387342012 hasAuthorship W4387342012A5069317254 @default.
- W4387342012 hasAuthorship W4387342012A5072286524 @default.
- W4387342012 hasAuthorship W4387342012A5086759595 @default.
- W4387342012 hasConcept C105795698 @default.
- W4387342012 hasConcept C119857082 @default.
- W4387342012 hasConcept C128990827 @default.
- W4387342012 hasConcept C139945424 @default.
- W4387342012 hasConcept C150217764 @default.
- W4387342012 hasConcept C154945302 @default.
- W4387342012 hasConcept C159390177 @default.
- W4387342012 hasConcept C178790620 @default.
- W4387342012 hasConcept C185592680 @default.
- W4387342012 hasConcept C2776957854 @default.
- W4387342012 hasConcept C2780092901 @default.
- W4387342012 hasConcept C2780150128 @default.
- W4387342012 hasConcept C33923547 @default.
- W4387342012 hasConcept C39432304 @default.
- W4387342012 hasConcept C41008148 @default.
- W4387342012 hasConcept C48921125 @default.
- W4387342012 hasConcept C50644808 @default.
- W4387342012 hasConceptScore W4387342012C105795698 @default.
- W4387342012 hasConceptScore W4387342012C119857082 @default.
- W4387342012 hasConceptScore W4387342012C128990827 @default.
- W4387342012 hasConceptScore W4387342012C139945424 @default.
- W4387342012 hasConceptScore W4387342012C150217764 @default.
- W4387342012 hasConceptScore W4387342012C154945302 @default.
- W4387342012 hasConceptScore W4387342012C159390177 @default.
- W4387342012 hasConceptScore W4387342012C178790620 @default.
- W4387342012 hasConceptScore W4387342012C185592680 @default.
- W4387342012 hasConceptScore W4387342012C2776957854 @default.
- W4387342012 hasConceptScore W4387342012C2780092901 @default.
- W4387342012 hasConceptScore W4387342012C2780150128 @default.
- W4387342012 hasConceptScore W4387342012C33923547 @default.
- W4387342012 hasConceptScore W4387342012C39432304 @default.
- W4387342012 hasConceptScore W4387342012C41008148 @default.
- W4387342012 hasConceptScore W4387342012C48921125 @default.
- W4387342012 hasConceptScore W4387342012C50644808 @default.
- W4387342012 hasLocation W43873420121 @default.
- W4387342012 hasOpenAccess W4387342012 @default.
- W4387342012 hasPrimaryLocation W43873420121 @default.
- W4387342012 hasRelatedWork W2118461778 @default.
- W4387342012 hasRelatedWork W2294130298 @default.
- W4387342012 hasRelatedWork W2360847790 @default.
- W4387342012 hasRelatedWork W2598237895 @default.
- W4387342012 hasRelatedWork W3006581312 @default.
- W4387342012 hasRelatedWork W3198428055 @default.
- W4387342012 hasRelatedWork W3215112565 @default.