Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387342849> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4387342849 abstract "Abstract We introduce novel mathematical and computational tools to develop a complete algorithm for computing the set of non-properness of polynomials maps in the plane. In particular, this set, which we call the Jelonek set , is a subset of $$mathbb {K}^2$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> , where a dominant polynomial map $$f: mathbb {K}^2 rightarrow mathbb {K}^2$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>→</mml:mo> <mml:msup> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math> is not proper; $$mathbb {K}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>K</mml:mi> </mml:math> could be either $$mathbb {C}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>C</mml:mi> </mml:math> or $$mathbb {R}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>R</mml:mi> </mml:math> . Unlike all the previously known approaches we make no assumptions on f whenever $$mathbb {K} = mathbb {R}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> </mml:math> ; this is the first algorithm with this property. The algorithm takes into account the Newton polytopes of the polynomials. As a byproduct we provide a finer representation of the set of non-properness as a union of semi-algebraic curves, that correspond to edges of the Newton polytopes, which is of independent interest. Finally, we present a precise Boolean complexity analysis of the algorithm and a prototype implementation in maple ." @default.
- W4387342849 created "2023-10-05" @default.
- W4387342849 creator A5002548887 @default.
- W4387342849 creator A5003791096 @default.
- W4387342849 date "2023-10-04" @default.
- W4387342849 modified "2023-10-06" @default.
- W4387342849 title "Computing the Non-properness Set of Real Polynomial Maps in the Plane" @default.
- W4387342849 cites W1536615012 @default.
- W4387342849 cites W1574151794 @default.
- W4387342849 cites W1986770128 @default.
- W4387342849 cites W1997292879 @default.
- W4387342849 cites W2001607364 @default.
- W4387342849 cites W2006311046 @default.
- W4387342849 cites W2007817219 @default.
- W4387342849 cites W2010115411 @default.
- W4387342849 cites W2011693299 @default.
- W4387342849 cites W201219442 @default.
- W4387342849 cites W2023715740 @default.
- W4387342849 cites W2048235185 @default.
- W4387342849 cites W2054337539 @default.
- W4387342849 cites W2055287661 @default.
- W4387342849 cites W2074906705 @default.
- W4387342849 cites W2077832504 @default.
- W4387342849 cites W2087173622 @default.
- W4387342849 cites W2092871292 @default.
- W4387342849 cites W2094919974 @default.
- W4387342849 cites W2118722249 @default.
- W4387342849 cites W2130952444 @default.
- W4387342849 cites W2144619406 @default.
- W4387342849 cites W2245029098 @default.
- W4387342849 cites W2324237006 @default.
- W4387342849 cites W2344308227 @default.
- W4387342849 cites W2464473992 @default.
- W4387342849 cites W2626508605 @default.
- W4387342849 cites W2746943560 @default.
- W4387342849 cites W2981664817 @default.
- W4387342849 cites W3137636070 @default.
- W4387342849 cites W4251391716 @default.
- W4387342849 cites W4253494739 @default.
- W4387342849 cites W4289420046 @default.
- W4387342849 doi "https://doi.org/10.1007/s10013-023-00652-0" @default.
- W4387342849 hasPublicationYear "2023" @default.
- W4387342849 type Work @default.
- W4387342849 citedByCount "0" @default.
- W4387342849 crossrefType "journal-article" @default.
- W4387342849 hasAuthorship W4387342849A5002548887 @default.
- W4387342849 hasAuthorship W4387342849A5003791096 @default.
- W4387342849 hasBestOaLocation W43873428491 @default.
- W4387342849 hasConcept C11413529 @default.
- W4387342849 hasConcept C154945302 @default.
- W4387342849 hasConcept C41008148 @default.
- W4387342849 hasConceptScore W4387342849C11413529 @default.
- W4387342849 hasConceptScore W4387342849C154945302 @default.
- W4387342849 hasConceptScore W4387342849C41008148 @default.
- W4387342849 hasFunder F4320322958 @default.
- W4387342849 hasLocation W43873428491 @default.
- W4387342849 hasOpenAccess W4387342849 @default.
- W4387342849 hasPrimaryLocation W43873428491 @default.
- W4387342849 hasRelatedWork W2051487156 @default.
- W4387342849 hasRelatedWork W2073681303 @default.
- W4387342849 hasRelatedWork W2317200988 @default.
- W4387342849 hasRelatedWork W2358668433 @default.
- W4387342849 hasRelatedWork W2376932109 @default.
- W4387342849 hasRelatedWork W2382290278 @default.
- W4387342849 hasRelatedWork W2386767533 @default.
- W4387342849 hasRelatedWork W2390279801 @default.
- W4387342849 hasRelatedWork W2748952813 @default.
- W4387342849 hasRelatedWork W2899084033 @default.
- W4387342849 isParatext "false" @default.
- W4387342849 isRetracted "false" @default.
- W4387342849 workType "article" @default.