Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387344927> ?p ?o ?g. }
- W4387344927 endingPage "26" @default.
- W4387344927 startingPage "1" @default.
- W4387344927 abstract "Algorithmic risk assessments are being deployed in an increasingly broad spectrum of domains including banking, medicine, and law enforcement. However, there is widespread concern about their fairness and trustworthiness, and people are also known to display algorithm aversion, preferring human assessments even when they are quantitatively worse. Thus, how does the framing of who made an assessment affect how people perceive its fairness? We investigate whether individual algorithmic assessments are perceived to be more or less accurate, fair, and interpretable than identical human assessments, and explore how these perceptions change when assessments are obviously biased against a subgroup. To this end, we conducted an online experiment that manipulated how biased risk assessments are in a loan repayment task, and reported the assessments as being made either by a statistical model or a human analyst. We find that predictions made by the model are consistently perceived as less fair and less interpretable than those made by the analyst despite being identical. Furthermore, biased predictive errors were more likely to widen this perception gap, with the algorithm being judged even more harshly for making a biased mistake. Our results illustrate that who makes risk assessments can influence perceptions of how acceptable those assessments are - even if they are identically accurate and identically biased against subgroups. Additional work is needed to determine whether and how decision aids should be presented to stakeholders so that the inherent fairness and interpretability of their recommendations, rather than their framing, determines how they are perceived." @default.
- W4387344927 created "2023-10-05" @default.
- W4387344927 creator A5048789742 @default.
- W4387344927 creator A5066392999 @default.
- W4387344927 creator A5082665196 @default.
- W4387344927 date "2023-09-28" @default.
- W4387344927 modified "2023-10-15" @default.
- W4387344927 title "People Perceive Algorithmic Assessments as Less Fair and Trustworthy Than Identical Human Assessments" @default.
- W4387344927 cites W1522638407 @default.
- W4387344927 cites W1991500470 @default.
- W4387344927 cites W2011137594 @default.
- W4387344927 cites W2018052230 @default.
- W4387344927 cites W2027103861 @default.
- W4387344927 cites W2085105383 @default.
- W4387344927 cites W2085589636 @default.
- W4387344927 cites W2088309143 @default.
- W4387344927 cites W2095932468 @default.
- W4387344927 cites W2100960835 @default.
- W4387344927 cites W2141344358 @default.
- W4387344927 cites W2153003445 @default.
- W4387344927 cites W2154157725 @default.
- W4387344927 cites W2264856678 @default.
- W4387344927 cites W2544318541 @default.
- W4387344927 cites W2563852449 @default.
- W4387344927 cites W2584805976 @default.
- W4387344927 cites W2588194244 @default.
- W4387344927 cites W2599025709 @default.
- W4387344927 cites W2792183666 @default.
- W4387344927 cites W2792859381 @default.
- W4387344927 cites W2795501687 @default.
- W4387344927 cites W2796133875 @default.
- W4387344927 cites W2800068874 @default.
- W4387344927 cites W2883360892 @default.
- W4387344927 cites W2890472113 @default.
- W4387344927 cites W2891340972 @default.
- W4387344927 cites W2892104346 @default.
- W4387344927 cites W2899136066 @default.
- W4387344927 cites W2901481055 @default.
- W4387344927 cites W2901895173 @default.
- W4387344927 cites W2909392392 @default.
- W4387344927 cites W2918821272 @default.
- W4387344927 cites W2934399013 @default.
- W4387344927 cites W2942399136 @default.
- W4387344927 cites W2955669146 @default.
- W4387344927 cites W2961720344 @default.
- W4387344927 cites W2963588812 @default.
- W4387344927 cites W2974817986 @default.
- W4387344927 cites W2979893369 @default.
- W4387344927 cites W2983996708 @default.
- W4387344927 cites W2997468044 @default.
- W4387344927 cites W3013460382 @default.
- W4387344927 cites W3029022080 @default.
- W4387344927 cites W3047508744 @default.
- W4387344927 cites W3083961251 @default.
- W4387344927 cites W3092437886 @default.
- W4387344927 cites W3092479831 @default.
- W4387344927 cites W3103751997 @default.
- W4387344927 cites W3110817755 @default.
- W4387344927 cites W3121705224 @default.
- W4387344927 cites W3125633690 @default.
- W4387344927 cites W3136871948 @default.
- W4387344927 cites W3158471737 @default.
- W4387344927 cites W3159721124 @default.
- W4387344927 cites W3163411042 @default.
- W4387344927 cites W3181414820 @default.
- W4387344927 cites W3199781855 @default.
- W4387344927 cites W3207131510 @default.
- W4387344927 cites W4220897491 @default.
- W4387344927 cites W4224991000 @default.
- W4387344927 cites W4225006930 @default.
- W4387344927 cites W4225159586 @default.
- W4387344927 cites W4288414189 @default.
- W4387344927 cites W4296978576 @default.
- W4387344927 cites W4366547314 @default.
- W4387344927 doi "https://doi.org/10.1145/3610100" @default.
- W4387344927 hasPublicationYear "2023" @default.
- W4387344927 type Work @default.
- W4387344927 citedByCount "0" @default.
- W4387344927 crossrefType "journal-article" @default.
- W4387344927 hasAuthorship W4387344927A5048789742 @default.
- W4387344927 hasAuthorship W4387344927A5066392999 @default.
- W4387344927 hasAuthorship W4387344927A5082665196 @default.
- W4387344927 hasBestOaLocation W43873449271 @default.
- W4387344927 hasConcept C12174686 @default.
- W4387344927 hasConcept C127413603 @default.
- W4387344927 hasConcept C144133560 @default.
- W4387344927 hasConcept C154945302 @default.
- W4387344927 hasConcept C15744967 @default.
- W4387344927 hasConcept C162118730 @default.
- W4387344927 hasConcept C163355716 @default.
- W4387344927 hasConcept C169087156 @default.
- W4387344927 hasConcept C169760540 @default.
- W4387344927 hasConcept C17744445 @default.
- W4387344927 hasConcept C180747234 @default.
- W4387344927 hasConcept C199539241 @default.
- W4387344927 hasConcept C26760741 @default.
- W4387344927 hasConcept C2777179996 @default.
- W4387344927 hasConcept C2781067378 @default.