Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387345986> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4387345986 abstract "Early detection and diagnosis of brain tumors have a critical impact on the treatment of brain tumor patients. This is because initiating interventions early directly impacts the patient's chances of continuing their life. In the field of medical research, various methods are employed for the detection of brain tumors. Among these methods, magnetic resonance imaging (MRI) is the most popular due to its superior image quality. By leveraging technological advancements, the utilization of deep learning techniques in the identification of brain tumors ensures both high accuracy and simplification of the process. In a conducted study, a new model was developed by utilizing the VGG-19 architecture, a popular convolutional neural network model, to achieve high accuracy in brain tumor detection. In the study, precision, F1 score, accuracy, specificity, Matthews correlation coefficient, and recall metrics were used to evaluate the performance of the developed model. The deep learning model developed for brain tumor detection was trained and evaluated on an open-source dataset consisting of MRI images of gliomas, meningiomas, pituitary tumors, and healthy brains. The results obtained from the study demonstrate the promising potential of using the developed model in clinical applications for brain tumor detection. The high accuracy achieved by the developed model emphasizes its potential as an auxiliary resource for healthcare professionals in brain tumor detection. This research aims to evaluate the model as a valuable tool that can assist physicians in making informed treatment decisions regarding brain tumor diagnosis." @default.
- W4387345986 created "2023-10-05" @default.
- W4387345986 creator A5000406230 @default.
- W4387345986 creator A5000741407 @default.
- W4387345986 date "2023-09-18" @default.
- W4387345986 modified "2023-10-06" @default.
- W4387345986 title "Enhancing Brain Tumor Detection on MRI Images Using an Innovative VGG-19 Model-Based Approach" @default.
- W4387345986 cites W2182098131 @default.
- W4387345986 cites W2437478628 @default.
- W4387345986 cites W2596470483 @default.
- W4387345986 cites W2744130673 @default.
- W4387345986 cites W2778455075 @default.
- W4387345986 cites W2779494124 @default.
- W4387345986 cites W2782833026 @default.
- W4387345986 cites W2810138651 @default.
- W4387345986 cites W2905017682 @default.
- W4387345986 cites W2906424845 @default.
- W4387345986 cites W2955714720 @default.
- W4387345986 cites W2962949934 @default.
- W4387345986 cites W2963356165 @default.
- W4387345986 cites W2981539113 @default.
- W4387345986 cites W2983817809 @default.
- W4387345986 cites W2995003683 @default.
- W4387345986 cites W3006221608 @default.
- W4387345986 cites W3016120846 @default.
- W4387345986 cites W3114201221 @default.
- W4387345986 cites W3123941068 @default.
- W4387345986 cites W3162919936 @default.
- W4387345986 cites W4210309687 @default.
- W4387345986 cites W4210834226 @default.
- W4387345986 cites W4213442487 @default.
- W4387345986 cites W4214659643 @default.
- W4387345986 cites W4214701159 @default.
- W4387345986 cites W4283275666 @default.
- W4387345986 cites W4317567565 @default.
- W4387345986 cites W4319303005 @default.
- W4387345986 cites W4323923206 @default.
- W4387345986 cites W4362514962 @default.
- W4387345986 doi "https://doi.org/10.16984/saufenbilder.1302803" @default.
- W4387345986 hasPublicationYear "2023" @default.
- W4387345986 type Work @default.
- W4387345986 citedByCount "0" @default.
- W4387345986 crossrefType "journal-article" @default.
- W4387345986 hasAuthorship W4387345986A5000406230 @default.
- W4387345986 hasAuthorship W4387345986A5000741407 @default.
- W4387345986 hasBestOaLocation W43873459861 @default.
- W4387345986 hasConcept C108583219 @default.
- W4387345986 hasConcept C119857082 @default.
- W4387345986 hasConcept C126838900 @default.
- W4387345986 hasConcept C142724271 @default.
- W4387345986 hasConcept C143409427 @default.
- W4387345986 hasConcept C154945302 @default.
- W4387345986 hasConcept C2779130545 @default.
- W4387345986 hasConcept C41008148 @default.
- W4387345986 hasConcept C71924100 @default.
- W4387345986 hasConcept C81363708 @default.
- W4387345986 hasConceptScore W4387345986C108583219 @default.
- W4387345986 hasConceptScore W4387345986C119857082 @default.
- W4387345986 hasConceptScore W4387345986C126838900 @default.
- W4387345986 hasConceptScore W4387345986C142724271 @default.
- W4387345986 hasConceptScore W4387345986C143409427 @default.
- W4387345986 hasConceptScore W4387345986C154945302 @default.
- W4387345986 hasConceptScore W4387345986C2779130545 @default.
- W4387345986 hasConceptScore W4387345986C41008148 @default.
- W4387345986 hasConceptScore W4387345986C71924100 @default.
- W4387345986 hasConceptScore W4387345986C81363708 @default.
- W4387345986 hasLocation W43873459861 @default.
- W4387345986 hasOpenAccess W4387345986 @default.
- W4387345986 hasPrimaryLocation W43873459861 @default.
- W4387345986 hasRelatedWork W2731899572 @default.
- W4387345986 hasRelatedWork W2999805992 @default.
- W4387345986 hasRelatedWork W3116150086 @default.
- W4387345986 hasRelatedWork W3133861977 @default.
- W4387345986 hasRelatedWork W4200173597 @default.
- W4387345986 hasRelatedWork W4225304418 @default.
- W4387345986 hasRelatedWork W4287009405 @default.
- W4387345986 hasRelatedWork W4312417841 @default.
- W4387345986 hasRelatedWork W4321369474 @default.
- W4387345986 hasRelatedWork W4380075502 @default.
- W4387345986 isParatext "false" @default.
- W4387345986 isRetracted "false" @default.
- W4387345986 workType "article" @default.