Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387346412> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4387346412 abstract "Synonymous codons, which encode the same amino acid in a protein, are known to be used unequally in organisms. Prior research has been able to uncover preferred codons that are often found in more highly expressed genes. This has enabled different computational models that can predict gene expression of protein-coding genes; however, their performance is often affected by more diverse gene expression in higher organisms, i.e., high expression in only specific tissues or cell types. In this paper, we use a Natural Language Processing (NLP) algorithm, Bidirectional Encoder Representations from Transformers (BERT), to develop a new framework for predicting gene expression. Notably, our model architecture relies on the idea of sentiment analysis, i.e., assigning an overall emotion (sentiment) to protein-coding sequences. Our new framework, CodonBERT, is a a pre-trained model that better captures more intrinsic relationships between sequences and their expression, and we show that our model is capable of making substantially better predictions for a diverse collection of model organisms. Additionally, we show that our model learns inherent patterns of codon usage that can be traced using explainable AI (XAI) algorithms." @default.
- W4387346412 created "2023-10-05" @default.
- W4387346412 creator A5000606753 @default.
- W4387346412 creator A5019857186 @default.
- W4387346412 creator A5045156137 @default.
- W4387346412 date "2023-09-03" @default.
- W4387346412 modified "2023-10-06" @default.
- W4387346412 title "CodonBERT: Using BERT for Sentiment Analysis to Better Predict Genes with Low Expression" @default.
- W4387346412 cites W2018590530 @default.
- W4387346412 cites W2127303081 @default.
- W4387346412 cites W2611528178 @default.
- W4387346412 cites W2766995832 @default.
- W4387346412 cites W2783989023 @default.
- W4387346412 cites W2904542630 @default.
- W4387346412 cites W2949205269 @default.
- W4387346412 cites W2962101943 @default.
- W4387346412 cites W3021283815 @default.
- W4387346412 cites W3090005828 @default.
- W4387346412 cites W3127238141 @default.
- W4387346412 cites W3134359595 @default.
- W4387346412 cites W4312054452 @default.
- W4387346412 cites W4327550249 @default.
- W4387346412 doi "https://doi.org/10.1145/3584371.3613013" @default.
- W4387346412 hasPublicationYear "2023" @default.
- W4387346412 type Work @default.
- W4387346412 citedByCount "0" @default.
- W4387346412 crossrefType "proceedings-article" @default.
- W4387346412 hasAuthorship W4387346412A5000606753 @default.
- W4387346412 hasAuthorship W4387346412A5019857186 @default.
- W4387346412 hasAuthorship W4387346412A5045156137 @default.
- W4387346412 hasBestOaLocation W43873464121 @default.
- W4387346412 hasConcept C104317684 @default.
- W4387346412 hasConcept C105795698 @default.
- W4387346412 hasConcept C111919701 @default.
- W4387346412 hasConcept C118505674 @default.
- W4387346412 hasConcept C119857082 @default.
- W4387346412 hasConcept C141231307 @default.
- W4387346412 hasConcept C154945302 @default.
- W4387346412 hasConcept C179518139 @default.
- W4387346412 hasConcept C199360897 @default.
- W4387346412 hasConcept C204321447 @default.
- W4387346412 hasConcept C33923547 @default.
- W4387346412 hasConcept C41008148 @default.
- W4387346412 hasConcept C54355233 @default.
- W4387346412 hasConcept C66402592 @default.
- W4387346412 hasConcept C66746571 @default.
- W4387346412 hasConcept C70721500 @default.
- W4387346412 hasConcept C86803240 @default.
- W4387346412 hasConcept C87253356 @default.
- W4387346412 hasConcept C90559484 @default.
- W4387346412 hasConcept C91779695 @default.
- W4387346412 hasConceptScore W4387346412C104317684 @default.
- W4387346412 hasConceptScore W4387346412C105795698 @default.
- W4387346412 hasConceptScore W4387346412C111919701 @default.
- W4387346412 hasConceptScore W4387346412C118505674 @default.
- W4387346412 hasConceptScore W4387346412C119857082 @default.
- W4387346412 hasConceptScore W4387346412C141231307 @default.
- W4387346412 hasConceptScore W4387346412C154945302 @default.
- W4387346412 hasConceptScore W4387346412C179518139 @default.
- W4387346412 hasConceptScore W4387346412C199360897 @default.
- W4387346412 hasConceptScore W4387346412C204321447 @default.
- W4387346412 hasConceptScore W4387346412C33923547 @default.
- W4387346412 hasConceptScore W4387346412C41008148 @default.
- W4387346412 hasConceptScore W4387346412C54355233 @default.
- W4387346412 hasConceptScore W4387346412C66402592 @default.
- W4387346412 hasConceptScore W4387346412C66746571 @default.
- W4387346412 hasConceptScore W4387346412C70721500 @default.
- W4387346412 hasConceptScore W4387346412C86803240 @default.
- W4387346412 hasConceptScore W4387346412C87253356 @default.
- W4387346412 hasConceptScore W4387346412C90559484 @default.
- W4387346412 hasConceptScore W4387346412C91779695 @default.
- W4387346412 hasLocation W43873464121 @default.
- W4387346412 hasOpenAccess W4387346412 @default.
- W4387346412 hasPrimaryLocation W43873464121 @default.
- W4387346412 hasRelatedWork W1994940553 @default.
- W4387346412 hasRelatedWork W2017840720 @default.
- W4387346412 hasRelatedWork W2038779464 @default.
- W4387346412 hasRelatedWork W2102511336 @default.
- W4387346412 hasRelatedWork W2167481233 @default.
- W4387346412 hasRelatedWork W2275988210 @default.
- W4387346412 hasRelatedWork W2359640100 @default.
- W4387346412 hasRelatedWork W2982389646 @default.
- W4387346412 hasRelatedWork W3192794374 @default.
- W4387346412 hasRelatedWork W4362613237 @default.
- W4387346412 isParatext "false" @default.
- W4387346412 isRetracted "false" @default.
- W4387346412 workType "article" @default.