Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387348143> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4387348143 abstract "Efforts to reduce the negative effects of plastic trash are hampered by a lack of information on the local distribution of plastic items. Scientists have created AI-based computerized management systems, including deep learning and image processing algorithms, to enhance the effectiveness of preprocessing. Artificial intelligence allows for the automatic recognition of plastic trash on conveyor belts at landfills. Yet, it might be difficult to sort out the many shades of glass and plastic within a collection. To address this, one approach is to use a convolutional neural network (CNN) with intensive training. Due to their prevalence in everyday life, plastics such as polyethylene terephthalate (PET), polypropylene (PP), high-density polyethylene (HDPE), and low-density polyethylene (LDPE) pose a significant environmental threat and necessitate the development of an automated process for sorting plastic garbage. PET plastic is difficult to biodegrade due to its robust and durable structure, which is composed of repeating units of ethylene glycol and terephthalic acid. PET detritus can accumulate in the environment due to its resistance to biodegradation, causing harm to flora, fauna, and ecosystems. The strategy that may be utilized on mobile devices has been developed to implement this procedure in filtration plants and people's homes to address the waste management problems that plague major cities." @default.
- W4387348143 created "2023-10-05" @default.
- W4387348143 creator A5028442225 @default.
- W4387348143 creator A5029012283 @default.
- W4387348143 creator A5054437756 @default.
- W4387348143 creator A5072894654 @default.
- W4387348143 creator A5093004006 @default.
- W4387348143 date "2023-06-01" @default.
- W4387348143 modified "2023-10-06" @default.
- W4387348143 title "An Identification and Categorization of Plastic Material using Deep Learning Approach" @default.
- W4387348143 cites W1969624871 @default.
- W4387348143 cites W2089119772 @default.
- W4387348143 cites W2175023734 @default.
- W4387348143 cites W2194775991 @default.
- W4387348143 cites W2209636459 @default.
- W4387348143 cites W3015330711 @default.
- W4387348143 cites W3155690422 @default.
- W4387348143 cites W4226059168 @default.
- W4387348143 cites W4304208044 @default.
- W4387348143 cites W4312884299 @default.
- W4387348143 doi "https://doi.org/10.1109/icpcsn58827.2023.00054" @default.
- W4387348143 hasPublicationYear "2023" @default.
- W4387348143 type Work @default.
- W4387348143 citedByCount "0" @default.
- W4387348143 crossrefType "proceedings-article" @default.
- W4387348143 hasAuthorship W4387348143A5028442225 @default.
- W4387348143 hasAuthorship W4387348143A5029012283 @default.
- W4387348143 hasAuthorship W4387348143A5054437756 @default.
- W4387348143 hasAuthorship W4387348143A5072894654 @default.
- W4387348143 hasAuthorship W4387348143A5093004006 @default.
- W4387348143 hasConcept C108458091 @default.
- W4387348143 hasConcept C116834253 @default.
- W4387348143 hasConcept C127413603 @default.
- W4387348143 hasConcept C154945302 @default.
- W4387348143 hasConcept C159985019 @default.
- W4387348143 hasConcept C181748761 @default.
- W4387348143 hasConcept C18903297 @default.
- W4387348143 hasConcept C192562407 @default.
- W4387348143 hasConcept C21880701 @default.
- W4387348143 hasConcept C2779751980 @default.
- W4387348143 hasConcept C2780401329 @default.
- W4387348143 hasConcept C39432304 @default.
- W4387348143 hasConcept C41008148 @default.
- W4387348143 hasConcept C548081761 @default.
- W4387348143 hasConcept C86803240 @default.
- W4387348143 hasConceptScore W4387348143C108458091 @default.
- W4387348143 hasConceptScore W4387348143C116834253 @default.
- W4387348143 hasConceptScore W4387348143C127413603 @default.
- W4387348143 hasConceptScore W4387348143C154945302 @default.
- W4387348143 hasConceptScore W4387348143C159985019 @default.
- W4387348143 hasConceptScore W4387348143C181748761 @default.
- W4387348143 hasConceptScore W4387348143C18903297 @default.
- W4387348143 hasConceptScore W4387348143C192562407 @default.
- W4387348143 hasConceptScore W4387348143C21880701 @default.
- W4387348143 hasConceptScore W4387348143C2779751980 @default.
- W4387348143 hasConceptScore W4387348143C2780401329 @default.
- W4387348143 hasConceptScore W4387348143C39432304 @default.
- W4387348143 hasConceptScore W4387348143C41008148 @default.
- W4387348143 hasConceptScore W4387348143C548081761 @default.
- W4387348143 hasConceptScore W4387348143C86803240 @default.
- W4387348143 hasLocation W43873481431 @default.
- W4387348143 hasOpenAccess W4387348143 @default.
- W4387348143 hasPrimaryLocation W43873481431 @default.
- W4387348143 hasRelatedWork W1859940086 @default.
- W4387348143 hasRelatedWork W2002182064 @default.
- W4387348143 hasRelatedWork W2096888354 @default.
- W4387348143 hasRelatedWork W2899084033 @default.
- W4387348143 hasRelatedWork W3020499741 @default.
- W4387348143 hasRelatedWork W3041655611 @default.
- W4387348143 hasRelatedWork W3141194992 @default.
- W4387348143 hasRelatedWork W37273871 @default.
- W4387348143 hasRelatedWork W4210818660 @default.
- W4387348143 hasRelatedWork W4321116124 @default.
- W4387348143 isParatext "false" @default.
- W4387348143 isRetracted "false" @default.
- W4387348143 workType "article" @default.