Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387352533> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4387352533 endingPage "105570" @default.
- W4387352533 startingPage "105570" @default.
- W4387352533 abstract "Respiratory diseases (RDs) are a leading cause of death globally, with over 490,000 deaths in the EU and the US alone in 2017. Early detection of these diseases is crucial for improving treatment options and prolonging survival. However, diagnosing respiratory diseases can be challenging due to various factors such as physician shortages, financial constraints, and inexperienced doctors. To address these challenges, this paper presents a novel two-stage approach for the early detection and accurate classification of respiratory diseases using sound processing, machine learning, and deep learning techniques. The proposed approach utilizes a voice recorder and the internet to create a numerical feature vector using statistical properties of sound files from various datasets. The feature vector goes through a 2-stage feature elimination process for deep learning models and a 3-stage feature elimination process for machine learning models. The resulting feature vector is then fed into a supervised model to classify patients as healthy or suffering from a respiratory disease. A second classifier is then used to characterize the specific respiratory disease. Experiments with various machine/deep learning algorithms demonstrate that the proposed model outperforms existing methods in the literature in terms of accuracy and F1-score. The model achieves an accuracy score of 0.998 and an F1-score of 0.998 for distinguishing between healthy and respiratory disease-affected patients and an accuracy of 0.947 and an F1-score of 0.94 for categorizing ‘unhealthy’ records into COPD, asthma, and other respiratory diseases. The proposed approach has significant potential low-cost and efficient tool aiding early detection and classification. Every year, millions of people die as a result of respiratory diseases, particularly chronic obstructive pulmonary disease (COPD), asthma, and pneumonia. Early diagnosis is critical for reducing morbidity and mortality from respiratory diseases because the best treatment options are frequently discovered in the early stages. Even though there are numerous studies and screening programs that can aid in the early detection of these diseases, there are still significant gaps in screening tools. In this study, we investigated the prospects of a two-stage pipeline for an automated system for identifying respiratory diseases, as well as the potential applications of sound processing, machine learning, and deep learning techniques in respiratory diseases within the context of respiratory sounds. In the first stage, a feature vector was extracted directly from the respiratory sound, and it was determined whether the feature vector was related to a patient suffering from a respiratory disease using supervised machine learning techniques. In the second stage, the method can also distinguish between asthma, chronic obstructive pulmonary disease, and other respiratory diseases (Pneumonia, URTI, Bronchiectasis, Bronchiolitis, LRTI). Preliminary findings show that deep/machine learning-based methods have the potential to detect and classify respiratory illnesses in real time. The proposed model has great potential as a low-cost, easily accessible tool for screening and detecting respiratory diseases, thereby closing the gap in early diagnosis." @default.
- W4387352533 created "2023-10-05" @default.
- W4387352533 creator A5024471032 @default.
- W4387352533 creator A5085259115 @default.
- W4387352533 creator A5093005057 @default.
- W4387352533 date "2024-01-01" @default.
- W4387352533 modified "2023-10-16" @default.
- W4387352533 title "Respiratory sound-base disease classification and characterization with deep/machine learning techniques" @default.
- W4387352533 cites W1535810436 @default.
- W4387352533 cites W1975929202 @default.
- W4387352533 cites W1988790447 @default.
- W4387352533 cites W2033788889 @default.
- W4387352533 cites W2034921855 @default.
- W4387352533 cites W2040870580 @default.
- W4387352533 cites W2056132907 @default.
- W4387352533 cites W2077450748 @default.
- W4387352533 cites W2095366724 @default.
- W4387352533 cites W2111580864 @default.
- W4387352533 cites W2124954038 @default.
- W4387352533 cites W2125324924 @default.
- W4387352533 cites W2126423656 @default.
- W4387352533 cites W2133824856 @default.
- W4387352533 cites W2142784036 @default.
- W4387352533 cites W2145206231 @default.
- W4387352533 cites W2155653793 @default.
- W4387352533 cites W2157825442 @default.
- W4387352533 cites W2163720916 @default.
- W4387352533 cites W2167352044 @default.
- W4387352533 cites W2192908561 @default.
- W4387352533 cites W2408085426 @default.
- W4387352533 cites W2905577147 @default.
- W4387352533 cites W2912223386 @default.
- W4387352533 cites W2982084047 @default.
- W4387352533 cites W2985382943 @default.
- W4387352533 cites W2990781063 @default.
- W4387352533 cites W3004386671 @default.
- W4387352533 cites W3028563376 @default.
- W4387352533 cites W3096084735 @default.
- W4387352533 cites W4205232882 @default.
- W4387352533 cites W4210527351 @default.
- W4387352533 cites W4223451406 @default.
- W4387352533 cites W4245124083 @default.
- W4387352533 cites W4253667136 @default.
- W4387352533 cites W4294214983 @default.
- W4387352533 cites W4307687698 @default.
- W4387352533 cites W4315487202 @default.
- W4387352533 cites W73959248 @default.
- W4387352533 doi "https://doi.org/10.1016/j.bspc.2023.105570" @default.
- W4387352533 hasPublicationYear "2024" @default.
- W4387352533 type Work @default.
- W4387352533 citedByCount "0" @default.
- W4387352533 crossrefType "journal-article" @default.
- W4387352533 hasAuthorship W4387352533A5024471032 @default.
- W4387352533 hasAuthorship W4387352533A5085259115 @default.
- W4387352533 hasAuthorship W4387352533A5093005057 @default.
- W4387352533 hasBestOaLocation W43873525331 @default.
- W4387352533 hasConcept C108583219 @default.
- W4387352533 hasConcept C119857082 @default.
- W4387352533 hasConcept C12267149 @default.
- W4387352533 hasConcept C138885662 @default.
- W4387352533 hasConcept C154945302 @default.
- W4387352533 hasConcept C194051981 @default.
- W4387352533 hasConcept C2776401178 @default.
- W4387352533 hasConcept C2778137410 @default.
- W4387352533 hasConcept C41008148 @default.
- W4387352533 hasConcept C41895202 @default.
- W4387352533 hasConcept C95623464 @default.
- W4387352533 hasConceptScore W4387352533C108583219 @default.
- W4387352533 hasConceptScore W4387352533C119857082 @default.
- W4387352533 hasConceptScore W4387352533C12267149 @default.
- W4387352533 hasConceptScore W4387352533C138885662 @default.
- W4387352533 hasConceptScore W4387352533C154945302 @default.
- W4387352533 hasConceptScore W4387352533C194051981 @default.
- W4387352533 hasConceptScore W4387352533C2776401178 @default.
- W4387352533 hasConceptScore W4387352533C2778137410 @default.
- W4387352533 hasConceptScore W4387352533C41008148 @default.
- W4387352533 hasConceptScore W4387352533C41895202 @default.
- W4387352533 hasConceptScore W4387352533C95623464 @default.
- W4387352533 hasLocation W43873525331 @default.
- W4387352533 hasOpenAccess W4387352533 @default.
- W4387352533 hasPrimaryLocation W43873525331 @default.
- W4387352533 hasRelatedWork W1268861673 @default.
- W4387352533 hasRelatedWork W2090763504 @default.
- W4387352533 hasRelatedWork W2145869671 @default.
- W4387352533 hasRelatedWork W2357816140 @default.
- W4387352533 hasRelatedWork W2509147714 @default.
- W4387352533 hasRelatedWork W2579473328 @default.
- W4387352533 hasRelatedWork W2586833044 @default.
- W4387352533 hasRelatedWork W4239898203 @default.
- W4387352533 hasRelatedWork W4375867731 @default.
- W4387352533 hasRelatedWork W46955353 @default.
- W4387352533 hasVolume "87" @default.
- W4387352533 isParatext "false" @default.
- W4387352533 isRetracted "false" @default.
- W4387352533 workType "article" @default.