Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387353351> ?p ?o ?g. }
- W4387353351 endingPage "103606" @default.
- W4387353351 startingPage "103606" @default.
- W4387353351 abstract "Network intrusion detection system (NIDS) is an important line of defense for network security as network attacks become more frequent. In this paper, we propose a data-driven NIDS based on feature selection and deep learning, named FS-DL. FS-DL focuses on improving data quality, using methods such as standard deviation and association rule mining to remove a large number of redundant features, reduce computational load, and improve detection accuracy. To balance detection accuracy and time cost, FS-DL uses a simple neural network structure with only three layers and minimizes the number of neurons as much as possible. Experimental results show that FS-DL only requires a small number of traffic features to obtain better detection performance. In addition, we have designed an NIDS based on FS-DL, deployed in the software-defined networking (SDN) controller for online detection of abnormal traffic." @default.
- W4387353351 created "2023-10-05" @default.
- W4387353351 creator A5018027825 @default.
- W4387353351 creator A5034016908 @default.
- W4387353351 creator A5034806491 @default.
- W4387353351 creator A5061896220 @default.
- W4387353351 creator A5064899369 @default.
- W4387353351 creator A5086244779 @default.
- W4387353351 date "2023-11-01" @default.
- W4387353351 modified "2023-10-16" @default.
- W4387353351 title "A data-driven network intrusion detection system using feature selection and deep learning" @default.
- W4387353351 cites W1901616594 @default.
- W4387353351 cites W2028926203 @default.
- W4387353351 cites W2040340473 @default.
- W4387353351 cites W2067453331 @default.
- W4387353351 cites W2125560635 @default.
- W4387353351 cites W2399941526 @default.
- W4387353351 cites W2426032775 @default.
- W4387353351 cites W2531160404 @default.
- W4387353351 cites W2626468835 @default.
- W4387353351 cites W2736191430 @default.
- W4387353351 cites W2762776925 @default.
- W4387353351 cites W2802252153 @default.
- W4387353351 cites W2807786182 @default.
- W4387353351 cites W2890474333 @default.
- W4387353351 cites W2911505293 @default.
- W4387353351 cites W2973862992 @default.
- W4387353351 cites W2976972209 @default.
- W4387353351 cites W2981025625 @default.
- W4387353351 cites W2984419450 @default.
- W4387353351 cites W2986055611 @default.
- W4387353351 cites W2998722477 @default.
- W4387353351 cites W3016607949 @default.
- W4387353351 cites W3032266608 @default.
- W4387353351 cites W3102895825 @default.
- W4387353351 cites W3111824824 @default.
- W4387353351 cites W3118813946 @default.
- W4387353351 cites W3131088496 @default.
- W4387353351 cites W3138381676 @default.
- W4387353351 cites W3143254051 @default.
- W4387353351 cites W3151784567 @default.
- W4387353351 cites W3160220648 @default.
- W4387353351 cites W3161599138 @default.
- W4387353351 cites W3163895120 @default.
- W4387353351 cites W3179240416 @default.
- W4387353351 cites W4200055992 @default.
- W4387353351 cites W4238294603 @default.
- W4387353351 cites W4239124031 @default.
- W4387353351 cites W4285055378 @default.
- W4387353351 cites W4291710829 @default.
- W4387353351 cites W4308104964 @default.
- W4387353351 cites W4366990214 @default.
- W4387353351 cites W4376849086 @default.
- W4387353351 doi "https://doi.org/10.1016/j.jisa.2023.103606" @default.
- W4387353351 hasPublicationYear "2023" @default.
- W4387353351 type Work @default.
- W4387353351 citedByCount "0" @default.
- W4387353351 crossrefType "journal-article" @default.
- W4387353351 hasAuthorship W4387353351A5018027825 @default.
- W4387353351 hasAuthorship W4387353351A5034016908 @default.
- W4387353351 hasAuthorship W4387353351A5034806491 @default.
- W4387353351 hasAuthorship W4387353351A5061896220 @default.
- W4387353351 hasAuthorship W4387353351A5064899369 @default.
- W4387353351 hasAuthorship W4387353351A5086244779 @default.
- W4387353351 hasConcept C108583219 @default.
- W4387353351 hasConcept C119857082 @default.
- W4387353351 hasConcept C124101348 @default.
- W4387353351 hasConcept C138885662 @default.
- W4387353351 hasConcept C148483581 @default.
- W4387353351 hasConcept C153180895 @default.
- W4387353351 hasConcept C154945302 @default.
- W4387353351 hasConcept C182590292 @default.
- W4387353351 hasConcept C199360897 @default.
- W4387353351 hasConcept C2776401178 @default.
- W4387353351 hasConcept C2777904410 @default.
- W4387353351 hasConcept C31258907 @default.
- W4387353351 hasConcept C35525427 @default.
- W4387353351 hasConcept C41008148 @default.
- W4387353351 hasConcept C41895202 @default.
- W4387353351 hasConcept C50644808 @default.
- W4387353351 hasConcept C79403827 @default.
- W4387353351 hasConcept C81917197 @default.
- W4387353351 hasConceptScore W4387353351C108583219 @default.
- W4387353351 hasConceptScore W4387353351C119857082 @default.
- W4387353351 hasConceptScore W4387353351C124101348 @default.
- W4387353351 hasConceptScore W4387353351C138885662 @default.
- W4387353351 hasConceptScore W4387353351C148483581 @default.
- W4387353351 hasConceptScore W4387353351C153180895 @default.
- W4387353351 hasConceptScore W4387353351C154945302 @default.
- W4387353351 hasConceptScore W4387353351C182590292 @default.
- W4387353351 hasConceptScore W4387353351C199360897 @default.
- W4387353351 hasConceptScore W4387353351C2776401178 @default.
- W4387353351 hasConceptScore W4387353351C2777904410 @default.
- W4387353351 hasConceptScore W4387353351C31258907 @default.
- W4387353351 hasConceptScore W4387353351C35525427 @default.
- W4387353351 hasConceptScore W4387353351C41008148 @default.
- W4387353351 hasConceptScore W4387353351C41895202 @default.
- W4387353351 hasConceptScore W4387353351C50644808 @default.