Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387356912> ?p ?o ?g. }
- W4387356912 abstract "Accurate diagnostic and prognostic predictions of venous thromboembolism (VTE) are crucial for VTE management. Artificial intelligence (AI) enables autonomous identification of the most predictive patterns from large complex data. Although evidence regarding its performance in VTE prediction is emerging, a comprehensive analysis of performance is lacking.To systematically review the performance of AI in the diagnosis and prediction of VTE and compare it to clinical risk assessment models (RAMs) or logistic regression models.A systematic literature search was performed using PubMed, MEDLINE, EMBASE, and Web of Science from inception to April 20, 2021. Search terms included artificial intelligence and venous thromboembolism. Eligible criteria were original studies evaluating AI in the prediction of VTE in adults and reporting one of the following outcomes: sensitivity, specificity, positive predictive value, negative predictive value, or area under receiver operating curve (AUC). Risks of bias were assessed using the PROBAST tool. Unpaired t-test was performed to compare the mean AUC from AI versus conventional methods (RAMs or logistic regression models).A total of 20 studies were included. Number of participants ranged from 31 to 111 888. The AI-based models included artificial neural network (six studies), support vector machines (four studies), Bayesian methods (one study), super learner ensemble (one study), genetic programming (one study), unspecified machine learning models (two studies), and multiple machine learning models (five studies). Twelve studies (60%) had both training and testing cohorts. Among 14 studies (70%) where AUCs were reported, the mean AUC for AI versus conventional methods were 0.79 (95% CI: 0.74-0.85) versus 0.61 (95% CI: 0.54-0.68), respectively (p < .001). However, the good to excellent discriminative performance of AI methods is unlikely to be replicated when used in clinical practice, because most studies had high risk of bias due to missing data handling and outcome determination.The use of AI appears to improve the accuracy of diagnostic and prognostic prediction of VTE over conventional risk models; however, there was a high risk of bias observed across studies. Future studies should focus on transparent reporting, external validation, and clinical application of these models." @default.
- W4387356912 created "2023-10-06" @default.
- W4387356912 creator A5004885659 @default.
- W4387356912 creator A5007293816 @default.
- W4387356912 creator A5026792716 @default.
- W4387356912 creator A5031848979 @default.
- W4387356912 creator A5042613823 @default.
- W4387356912 creator A5063514590 @default.
- W4387356912 creator A5075331656 @default.
- W4387356912 creator A5076860206 @default.
- W4387356912 creator A5078062176 @default.
- W4387356912 creator A5079070593 @default.
- W4387356912 creator A5081145749 @default.
- W4387356912 creator A5085966137 @default.
- W4387356912 date "2023-10-04" @default.
- W4387356912 modified "2023-10-06" @default.
- W4387356912 title "Artificial intelligence in the prediction of venous thromboembolism: A systematic review and pooled analysis" @default.
- W4387356912 cites W1879406984 @default.
- W4387356912 cites W2019694480 @default.
- W4387356912 cites W2032845451 @default.
- W4387356912 cites W2077663753 @default.
- W4387356912 cites W2093050224 @default.
- W4387356912 cites W2119910794 @default.
- W4387356912 cites W2127602369 @default.
- W4387356912 cites W2193098097 @default.
- W4387356912 cites W2346047977 @default.
- W4387356912 cites W2483497332 @default.
- W4387356912 cites W2535609668 @default.
- W4387356912 cites W2754068451 @default.
- W4387356912 cites W2778983664 @default.
- W4387356912 cites W2782416748 @default.
- W4387356912 cites W2900524248 @default.
- W4387356912 cites W2907554860 @default.
- W4387356912 cites W2912844766 @default.
- W4387356912 cites W2913997948 @default.
- W4387356912 cites W2914101076 @default.
- W4387356912 cites W2936573766 @default.
- W4387356912 cites W2963870256 @default.
- W4387356912 cites W2966129221 @default.
- W4387356912 cites W2966167372 @default.
- W4387356912 cites W2967034651 @default.
- W4387356912 cites W2996480032 @default.
- W4387356912 cites W3000753279 @default.
- W4387356912 cites W3008184725 @default.
- W4387356912 cites W3036036765 @default.
- W4387356912 cites W3044246896 @default.
- W4387356912 cites W3046165938 @default.
- W4387356912 cites W3048871739 @default.
- W4387356912 cites W3114878753 @default.
- W4387356912 cites W3137936984 @default.
- W4387356912 cites W3141366869 @default.
- W4387356912 cites W3150419368 @default.
- W4387356912 cites W3177422647 @default.
- W4387356912 cites W3180959755 @default.
- W4387356912 cites W3206840963 @default.
- W4387356912 cites W4205164650 @default.
- W4387356912 cites W4280635818 @default.
- W4387356912 cites W4282915387 @default.
- W4387356912 cites W4304808250 @default.
- W4387356912 cites W4308687480 @default.
- W4387356912 doi "https://doi.org/10.1111/ejh.14110" @default.
- W4387356912 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37794526" @default.
- W4387356912 hasPublicationYear "2023" @default.
- W4387356912 type Work @default.
- W4387356912 citedByCount "0" @default.
- W4387356912 crossrefType "journal-article" @default.
- W4387356912 hasAuthorship W4387356912A5004885659 @default.
- W4387356912 hasAuthorship W4387356912A5007293816 @default.
- W4387356912 hasAuthorship W4387356912A5026792716 @default.
- W4387356912 hasAuthorship W4387356912A5031848979 @default.
- W4387356912 hasAuthorship W4387356912A5042613823 @default.
- W4387356912 hasAuthorship W4387356912A5063514590 @default.
- W4387356912 hasAuthorship W4387356912A5075331656 @default.
- W4387356912 hasAuthorship W4387356912A5076860206 @default.
- W4387356912 hasAuthorship W4387356912A5078062176 @default.
- W4387356912 hasAuthorship W4387356912A5079070593 @default.
- W4387356912 hasAuthorship W4387356912A5081145749 @default.
- W4387356912 hasAuthorship W4387356912A5085966137 @default.
- W4387356912 hasConcept C119857082 @default.
- W4387356912 hasConcept C12267149 @default.
- W4387356912 hasConcept C126322002 @default.
- W4387356912 hasConcept C151956035 @default.
- W4387356912 hasConcept C154945302 @default.
- W4387356912 hasConcept C17744445 @default.
- W4387356912 hasConcept C199539241 @default.
- W4387356912 hasConcept C2779473830 @default.
- W4387356912 hasConcept C41008148 @default.
- W4387356912 hasConcept C45804977 @default.
- W4387356912 hasConcept C50644808 @default.
- W4387356912 hasConcept C58471807 @default.
- W4387356912 hasConcept C71924100 @default.
- W4387356912 hasConceptScore W4387356912C119857082 @default.
- W4387356912 hasConceptScore W4387356912C12267149 @default.
- W4387356912 hasConceptScore W4387356912C126322002 @default.
- W4387356912 hasConceptScore W4387356912C151956035 @default.
- W4387356912 hasConceptScore W4387356912C154945302 @default.
- W4387356912 hasConceptScore W4387356912C17744445 @default.
- W4387356912 hasConceptScore W4387356912C199539241 @default.
- W4387356912 hasConceptScore W4387356912C2779473830 @default.
- W4387356912 hasConceptScore W4387356912C41008148 @default.