Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387357807> ?p ?o ?g. }
- W4387357807 endingPage "e2336100" @default.
- W4387357807 startingPage "e2336100" @default.
- W4387357807 abstract "Multimodal generative artificial intelligence (AI) methodologies have the potential to optimize emergency department care by producing draft radiology reports from input images.To evaluate the accuracy and quality of AI-generated chest radiograph interpretations in the emergency department setting.This was a retrospective diagnostic study of 500 randomly sampled emergency department encounters at a tertiary care institution including chest radiographs interpreted by both a teleradiology service and on-site attending radiologist from January 2022 to January 2023. An AI interpretation was generated for each radiograph. The 3 radiograph interpretations were each rated in duplicate by 6 emergency department physicians using a 5-point Likert scale.The primary outcome was any difference in Likert scores between radiologist, AI, and teleradiology reports, using a cumulative link mixed model. Secondary analyses compared the probability of each report type containing no clinically significant discrepancy with further stratification by finding presence, using a logistic mixed-effects model. Physician comments on discrepancies were recorded.A total of 500 ED studies were included from 500 unique patients with a mean (SD) age of 53.3 (21.6) years; 282 patients (56.4%) were female. There was a significant association of report type with ratings, with post hoc tests revealing significantly greater scores for AI (mean [SE] score, 3.22 [0.34]; P < .001) and radiologist (mean [SE] score, 3.34 [0.34]; P < .001) reports compared with teleradiology (mean [SE] score, 2.74 [0.34]) reports. AI and radiologist reports were not significantly different. On secondary analysis, there was no difference in the probability of no clinically significant discrepancy between the 3 report types. Further stratification of reports by presence of cardiomegaly, pulmonary edema, pleural effusion, infiltrate, pneumothorax, and support devices also yielded no difference in the probability of containing no clinically significant discrepancy between the report types.In a representative sample of emergency department chest radiographs, results suggest that the generative AI model produced reports of similar clinical accuracy and textual quality to radiologist reports while providing higher textual quality than teleradiologist reports. Implementation of the model in the clinical workflow could enable timely alerts to life-threatening pathology while aiding imaging interpretation and documentation." @default.
- W4387357807 created "2023-10-06" @default.
- W4387357807 creator A5007233027 @default.
- W4387357807 creator A5009157075 @default.
- W4387357807 creator A5016544185 @default.
- W4387357807 creator A5032062736 @default.
- W4387357807 creator A5038109046 @default.
- W4387357807 creator A5041840320 @default.
- W4387357807 creator A5063646843 @default.
- W4387357807 creator A5064585277 @default.
- W4387357807 creator A5073598934 @default.
- W4387357807 creator A5079026336 @default.
- W4387357807 creator A5079728298 @default.
- W4387357807 creator A5085920650 @default.
- W4387357807 creator A5088760866 @default.
- W4387357807 date "2023-10-05" @default.
- W4387357807 modified "2023-10-11" @default.
- W4387357807 title "Generative Artificial Intelligence for Chest Radiograph Interpretation in the Emergency Department" @default.
- W4387357807 cites W1979886172 @default.
- W4387357807 cites W1981072366 @default.
- W4387357807 cites W2000051383 @default.
- W4387357807 cites W2086114944 @default.
- W4387357807 cites W2105453395 @default.
- W4387357807 cites W2160326556 @default.
- W4387357807 cites W2573251908 @default.
- W4387357807 cites W2794467195 @default.
- W4387357807 cites W2955396209 @default.
- W4387357807 cites W2955604386 @default.
- W4387357807 cites W3132394689 @default.
- W4387357807 cites W3155813621 @default.
- W4387357807 cites W3159609272 @default.
- W4387357807 cites W3200849552 @default.
- W4387357807 cites W4220725161 @default.
- W4387357807 cites W4250746569 @default.
- W4387357807 cites W4293802305 @default.
- W4387357807 cites W4296027312 @default.
- W4387357807 cites W4296139711 @default.
- W4387357807 cites W4311175914 @default.
- W4387357807 cites W4317897818 @default.
- W4387357807 cites W4319316009 @default.
- W4387357807 cites W4323347338 @default.
- W4387357807 cites W4385546024 @default.
- W4387357807 doi "https://doi.org/10.1001/jamanetworkopen.2023.36100" @default.
- W4387357807 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37796505" @default.
- W4387357807 hasPublicationYear "2023" @default.
- W4387357807 type Work @default.
- W4387357807 citedByCount "0" @default.
- W4387357807 crossrefType "journal-article" @default.
- W4387357807 hasAuthorship W4387357807A5007233027 @default.
- W4387357807 hasAuthorship W4387357807A5009157075 @default.
- W4387357807 hasAuthorship W4387357807A5016544185 @default.
- W4387357807 hasAuthorship W4387357807A5032062736 @default.
- W4387357807 hasAuthorship W4387357807A5038109046 @default.
- W4387357807 hasAuthorship W4387357807A5041840320 @default.
- W4387357807 hasAuthorship W4387357807A5063646843 @default.
- W4387357807 hasAuthorship W4387357807A5064585277 @default.
- W4387357807 hasAuthorship W4387357807A5073598934 @default.
- W4387357807 hasAuthorship W4387357807A5079026336 @default.
- W4387357807 hasAuthorship W4387357807A5079728298 @default.
- W4387357807 hasAuthorship W4387357807A5085920650 @default.
- W4387357807 hasAuthorship W4387357807A5088760866 @default.
- W4387357807 hasBestOaLocation W43873578071 @default.
- W4387357807 hasConcept C105776082 @default.
- W4387357807 hasConcept C118552586 @default.
- W4387357807 hasConcept C126322002 @default.
- W4387357807 hasConcept C126838900 @default.
- W4387357807 hasConcept C138496976 @default.
- W4387357807 hasConcept C151956035 @default.
- W4387357807 hasConcept C15744967 @default.
- W4387357807 hasConcept C160735492 @default.
- W4387357807 hasConcept C162324750 @default.
- W4387357807 hasConcept C167135981 @default.
- W4387357807 hasConcept C2779891985 @default.
- W4387357807 hasConcept C2780724011 @default.
- W4387357807 hasConcept C2781137159 @default.
- W4387357807 hasConcept C36454342 @default.
- W4387357807 hasConcept C50522688 @default.
- W4387357807 hasConcept C71924100 @default.
- W4387357807 hasConcept C73884952 @default.
- W4387357807 hasConceptScore W4387357807C105776082 @default.
- W4387357807 hasConceptScore W4387357807C118552586 @default.
- W4387357807 hasConceptScore W4387357807C126322002 @default.
- W4387357807 hasConceptScore W4387357807C126838900 @default.
- W4387357807 hasConceptScore W4387357807C138496976 @default.
- W4387357807 hasConceptScore W4387357807C151956035 @default.
- W4387357807 hasConceptScore W4387357807C15744967 @default.
- W4387357807 hasConceptScore W4387357807C160735492 @default.
- W4387357807 hasConceptScore W4387357807C162324750 @default.
- W4387357807 hasConceptScore W4387357807C167135981 @default.
- W4387357807 hasConceptScore W4387357807C2779891985 @default.
- W4387357807 hasConceptScore W4387357807C2780724011 @default.
- W4387357807 hasConceptScore W4387357807C2781137159 @default.
- W4387357807 hasConceptScore W4387357807C36454342 @default.
- W4387357807 hasConceptScore W4387357807C50522688 @default.
- W4387357807 hasConceptScore W4387357807C71924100 @default.
- W4387357807 hasConceptScore W4387357807C73884952 @default.
- W4387357807 hasIssue "10" @default.
- W4387357807 hasLocation W43873578071 @default.