Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387358703> ?p ?o ?g. }
- W4387358703 endingPage "102328" @default.
- W4387358703 startingPage "102328" @default.
- W4387358703 abstract "Wastewater treatment plants offer an important pathway for microplastics (MPs) to enter natural aquatic systems. Traditional MP analysis often involves manual sorting of MPs, which can be time-consuming and labor-intensive and is susceptible to human errors, particularly when handling large sample sizes. Herein, five convolutional neural networks—EfficientNet_b7, Inception_v3, Resnet_v2_50, Resnet_v2_101, and Mobilenet_v3—were employed using transfer learning (TL) methods to categorize MPs extracted from municipal wastewater treatment plants into four morphologies: fibers, films, fragments, and pellets. A Samsung Galaxy S22 Android smartphone was used to capture pictures of the MPs using a stereomicroscope, which were then used to train the neural networks. First, TL methods were employed using an 80:20 split of training and validation datasets and testing sets, and the effectiveness of the methods was evaluated via five-fold cross validation. Second, the effect of the sizes of the training and validation sets on the performances of different neural networks was estimated through augmentation of these sets to 300% and their combination with the original dataset, yielding 5104 images. The overall performances of the considered neural networks were evaluated in terms of accuracy, precision, recall, F1 score, and training time. The proposed approach achieved accuracies of 92%–96% and 94%–98% in classifying the original and augmented datasets, respectively, based on MP morphologies. Notably, EfficientNet_b7, Inception_v3, and Mobilenet_v3 achieved the highest classification accuracy of 98% when trained on the augmented dataset. Mobilenet_v3 achieved a competitive accuracy on our datasets while being considerably smaller and more computationally efficient, leading to its selection for deployment in Android mobile and web applications. Overall, Mobilenet_v3 can promptly classify MPs in real time, offering an efficient, effective solution for MP image classification on a smartphone." @default.
- W4387358703 created "2023-10-06" @default.
- W4387358703 creator A5010499852 @default.
- W4387358703 creator A5013362831 @default.
- W4387358703 creator A5041630370 @default.
- W4387358703 date "2023-12-01" @default.
- W4387358703 modified "2023-10-16" @default.
- W4387358703 title "Comparative analysis of five convolutional neural networks and transfer learning classification approach for microplastics in wastewater treatment plants" @default.
- W4387358703 cites W1486852018 @default.
- W4387358703 cites W1918281332 @default.
- W4387358703 cites W2003022112 @default.
- W4387358703 cites W2515718042 @default.
- W4387358703 cites W2545265990 @default.
- W4387358703 cites W2740138389 @default.
- W4387358703 cites W2767378937 @default.
- W4387358703 cites W2896963321 @default.
- W4387358703 cites W2937413596 @default.
- W4387358703 cites W2954681418 @default.
- W4387358703 cites W2977497713 @default.
- W4387358703 cites W2991055504 @default.
- W4387358703 cites W3003956409 @default.
- W4387358703 cites W3015848146 @default.
- W4387358703 cites W3080345535 @default.
- W4387358703 cites W3094752424 @default.
- W4387358703 cites W3095722810 @default.
- W4387358703 cites W3095953325 @default.
- W4387358703 cites W3109852393 @default.
- W4387358703 cites W3116458863 @default.
- W4387358703 cites W3119257952 @default.
- W4387358703 cites W3120546273 @default.
- W4387358703 cites W3125889112 @default.
- W4387358703 cites W3146691563 @default.
- W4387358703 cites W3149839483 @default.
- W4387358703 cites W3165614321 @default.
- W4387358703 cites W3168600003 @default.
- W4387358703 cites W3188305086 @default.
- W4387358703 cites W3189726299 @default.
- W4387358703 cites W3199879175 @default.
- W4387358703 cites W3205167860 @default.
- W4387358703 cites W3208505027 @default.
- W4387358703 cites W4213036065 @default.
- W4387358703 cites W4213144456 @default.
- W4387358703 cites W4213263318 @default.
- W4387358703 cites W4220675743 @default.
- W4387358703 cites W4220879982 @default.
- W4387358703 cites W4220911441 @default.
- W4387358703 cites W4221000150 @default.
- W4387358703 cites W4221111998 @default.
- W4387358703 cites W4224079119 @default.
- W4387358703 cites W4226024554 @default.
- W4387358703 cites W4235490704 @default.
- W4387358703 cites W4280543850 @default.
- W4387358703 cites W4281949977 @default.
- W4387358703 cites W4283399757 @default.
- W4387358703 cites W4286257051 @default.
- W4387358703 cites W4288710853 @default.
- W4387358703 cites W4297910530 @default.
- W4387358703 cites W4310860258 @default.
- W4387358703 cites W4311354879 @default.
- W4387358703 cites W4311512918 @default.
- W4387358703 cites W4315865070 @default.
- W4387358703 cites W4317425876 @default.
- W4387358703 cites W4318777809 @default.
- W4387358703 cites W4324257920 @default.
- W4387358703 cites W4327564956 @default.
- W4387358703 cites W4376619308 @default.
- W4387358703 doi "https://doi.org/10.1016/j.ecoinf.2023.102328" @default.
- W4387358703 hasPublicationYear "2023" @default.
- W4387358703 type Work @default.
- W4387358703 citedByCount "0" @default.
- W4387358703 crossrefType "journal-article" @default.
- W4387358703 hasAuthorship W4387358703A5010499852 @default.
- W4387358703 hasAuthorship W4387358703A5013362831 @default.
- W4387358703 hasAuthorship W4387358703A5041630370 @default.
- W4387358703 hasBestOaLocation W43873587031 @default.
- W4387358703 hasConcept C119857082 @default.
- W4387358703 hasConcept C150899416 @default.
- W4387358703 hasConcept C153180895 @default.
- W4387358703 hasConcept C154945302 @default.
- W4387358703 hasConcept C18903297 @default.
- W4387358703 hasConcept C2780401329 @default.
- W4387358703 hasConcept C39432304 @default.
- W4387358703 hasConcept C41008148 @default.
- W4387358703 hasConcept C50644808 @default.
- W4387358703 hasConcept C81363708 @default.
- W4387358703 hasConcept C86803240 @default.
- W4387358703 hasConceptScore W4387358703C119857082 @default.
- W4387358703 hasConceptScore W4387358703C150899416 @default.
- W4387358703 hasConceptScore W4387358703C153180895 @default.
- W4387358703 hasConceptScore W4387358703C154945302 @default.
- W4387358703 hasConceptScore W4387358703C18903297 @default.
- W4387358703 hasConceptScore W4387358703C2780401329 @default.
- W4387358703 hasConceptScore W4387358703C39432304 @default.
- W4387358703 hasConceptScore W4387358703C41008148 @default.
- W4387358703 hasConceptScore W4387358703C50644808 @default.
- W4387358703 hasConceptScore W4387358703C81363708 @default.
- W4387358703 hasConceptScore W4387358703C86803240 @default.
- W4387358703 hasLocation W43873587031 @default.