Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387358792> ?p ?o ?g. }
- W4387358792 abstract "Abstract Background Efficient identification of individuals at high risk of skin cancer is crucial for implementing personalized screening strategies and subsequent care. While Artificial Intelligence holds promising potential for predictive analysis using image data, its application for skin cancer risk prediction utilizing facial images remains unexplored. We present a neural network-based explainable artificial intelligence (XAI) approach for skin cancer risk prediction based on 2D facial images and compare its efficacy to 18 established skin cancer risk factors using data from the Rotterdam Study. Methods The study employed data from the Rotterdam population-based study in which both skin cancer risk factors and 2D facial images and the occurrence of skin cancer were collected from 2010 to 2018. We conducted a deep-learning survival analysis based on 2D facial images using our developed XAI approach. We subsequently compared these results with survival analysis based on skin cancer risk factors using cox proportional hazard regression. Findings Among the 2,810 participants (mean Age=68.5±9.3 years, average Follow-up=5.0 years), 228 participants were diagnosed with skin cancer after photo acquisition. Our XAI approach achieved superior predictive accuracy based on 2D facial images (c-index=0.72, SD=0.05), outperforming that of the known risk factors (c-index=0.59, SD=0.03). Interpretation This proof-of-concept study underscores the high potential of harnessing facial images and a tailored XAI approach as an easily accessible alternative over known risk factors for identifying individuals at high risk of skin cancer. Funding The Rotterdam Study is funded through unrestricted research grants from Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. G.V. Roshchupkin is supported by the ZonMw Veni grant (Veni, 549 1936320). Research in context Evidence before this study We searched PubMed for articles published in English between Jan 1, 2000, and Sept 28, 2023, using the search terms “skin cancer” AND “artificial intelligence” OR “deep learning”. Our search returned more than 1,323 articles. We found no study had explored the feasibility of predicting the risk of developing skin cancer based on facial images that were taken before the first diagnosis of skin cancer. Although there were studies focused on deep learning image analysis and skin cancer, those are based on skin cancer lesion images. We found current skin cancer risk prediction models are still hampered by dependencies on complex patient data, including genetic information, or rely on self-reported patient data. Added value of this study In this study, we presented a neural network-based explainable artificial intelligence (XAI) approach for skin cancer risk prediction based on 2D facial images. To the best of our knowledge, our study is the first to utilize facial images as predictors in a skin cancer survival analysis. Our novel image-based approach showed superior performance when juxtaposed with traditional methods that relied on clinical and genetic skin cancer risk factors, as observed within our study population Implications of all the available evidence This proof-of-concept study underscores the high potential of harnessing facial images and a tailored XAI approach as an easily accessible alternative over known risk factors for identifying individuals at high risk of skin cancer." @default.
- W4387358792 created "2023-10-06" @default.
- W4387358792 creator A5003599279 @default.
- W4387358792 creator A5007790625 @default.
- W4387358792 creator A5029373833 @default.
- W4387358792 creator A5038164132 @default.
- W4387358792 creator A5054937522 @default.
- W4387358792 creator A5065916784 @default.
- W4387358792 creator A5082671011 @default.
- W4387358792 creator A5089285757 @default.
- W4387358792 date "2023-10-05" @default.
- W4387358792 modified "2023-10-12" @default.
- W4387358792 title "Predicting skin cancer risk from facial images with an explainable artificial intelligence (XAI) based approach: a proof-of-concept study" @default.
- W4387358792 cites W2013827712 @default.
- W4387358792 cites W2039530273 @default.
- W4387358792 cites W2051078614 @default.
- W4387358792 cites W2058061601 @default.
- W4387358792 cites W2090297516 @default.
- W4387358792 cites W2169366463 @default.
- W4387358792 cites W2281456422 @default.
- W4387358792 cites W2499657354 @default.
- W4387358792 cites W2528578439 @default.
- W4387358792 cites W2559742254 @default.
- W4387358792 cites W2581082771 @default.
- W4387358792 cites W2589055215 @default.
- W4387358792 cites W2752044543 @default.
- W4387358792 cites W2753919178 @default.
- W4387358792 cites W2761668583 @default.
- W4387358792 cites W2792680748 @default.
- W4387358792 cites W2954499361 @default.
- W4387358792 cites W2958089299 @default.
- W4387358792 cites W2972268072 @default.
- W4387358792 cites W2972423208 @default.
- W4387358792 cites W2982867985 @default.
- W4387358792 cites W2995022375 @default.
- W4387358792 cites W3023972366 @default.
- W4387358792 cites W3120489956 @default.
- W4387358792 cites W3131457744 @default.
- W4387358792 cites W3173006630 @default.
- W4387358792 cites W3183198896 @default.
- W4387358792 cites W4220856798 @default.
- W4387358792 cites W4366239418 @default.
- W4387358792 cites W4366241061 @default.
- W4387358792 cites W4366262984 @default.
- W4387358792 cites W4375945460 @default.
- W4387358792 cites W56226576 @default.
- W4387358792 cites W852280915 @default.
- W4387358792 doi "https://doi.org/10.1101/2023.10.04.23296549" @default.
- W4387358792 hasPublicationYear "2023" @default.
- W4387358792 type Work @default.
- W4387358792 citedByCount "0" @default.
- W4387358792 crossrefType "posted-content" @default.
- W4387358792 hasAuthorship W4387358792A5003599279 @default.
- W4387358792 hasAuthorship W4387358792A5007790625 @default.
- W4387358792 hasAuthorship W4387358792A5029373833 @default.
- W4387358792 hasAuthorship W4387358792A5038164132 @default.
- W4387358792 hasAuthorship W4387358792A5054937522 @default.
- W4387358792 hasAuthorship W4387358792A5065916784 @default.
- W4387358792 hasAuthorship W4387358792A5082671011 @default.
- W4387358792 hasAuthorship W4387358792A5089285757 @default.
- W4387358792 hasBestOaLocation W43873587921 @default.
- W4387358792 hasConcept C119857082 @default.
- W4387358792 hasConcept C121608353 @default.
- W4387358792 hasConcept C126322002 @default.
- W4387358792 hasConcept C153180895 @default.
- W4387358792 hasConcept C154945302 @default.
- W4387358792 hasConcept C2777789703 @default.
- W4387358792 hasConcept C2908647359 @default.
- W4387358792 hasConcept C41008148 @default.
- W4387358792 hasConcept C50382708 @default.
- W4387358792 hasConcept C71924100 @default.
- W4387358792 hasConcept C97448799 @default.
- W4387358792 hasConcept C99454951 @default.
- W4387358792 hasConceptScore W4387358792C119857082 @default.
- W4387358792 hasConceptScore W4387358792C121608353 @default.
- W4387358792 hasConceptScore W4387358792C126322002 @default.
- W4387358792 hasConceptScore W4387358792C153180895 @default.
- W4387358792 hasConceptScore W4387358792C154945302 @default.
- W4387358792 hasConceptScore W4387358792C2777789703 @default.
- W4387358792 hasConceptScore W4387358792C2908647359 @default.
- W4387358792 hasConceptScore W4387358792C41008148 @default.
- W4387358792 hasConceptScore W4387358792C50382708 @default.
- W4387358792 hasConceptScore W4387358792C71924100 @default.
- W4387358792 hasConceptScore W4387358792C97448799 @default.
- W4387358792 hasConceptScore W4387358792C99454951 @default.
- W4387358792 hasLocation W43873587921 @default.
- W4387358792 hasOpenAccess W4387358792 @default.
- W4387358792 hasPrimaryLocation W43873587921 @default.
- W4387358792 hasRelatedWork W2018724029 @default.
- W4387358792 hasRelatedWork W2055939901 @default.
- W4387358792 hasRelatedWork W2064638057 @default.
- W4387358792 hasRelatedWork W2090900200 @default.
- W4387358792 hasRelatedWork W2149119736 @default.
- W4387358792 hasRelatedWork W2279766832 @default.
- W4387358792 hasRelatedWork W3108298832 @default.
- W4387358792 hasRelatedWork W3117633420 @default.
- W4387358792 hasRelatedWork W3211320611 @default.
- W4387358792 hasRelatedWork W4232271242 @default.
- W4387358792 isParatext "false" @default.
- W4387358792 isRetracted "false" @default.