Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387360324> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4387360324 endingPage "119406" @default.
- W4387360324 startingPage "119406" @default.
- W4387360324 abstract "The rapid progress in artificial intelligence (AI) based image generation led to groundbreaking achievements, like OpenAI's DALL-E 2, showcasing state-of-the-art generative models in deep learning and computer vision. Recently, the Denoising Diffusion Probabilistic Model (DDPM) has emerged as a strong contender, excelling in generating high-resolution images with complex features similar to those found in real-world images. In this study, we investigate DDPM's potential as both generator and predictor of scanning electron microscope (SEM) images, encompassing both known and unseen microstructural conditions. To rigorously evaluate DDPM, we curated a comprehensive dataset comprising 27 distinct cast-forged AZ80 magnesium alloy components with varied process parameters and microstructure features. Some conditions were held back during training to test DDPM's predictive abilities for unseen scenarios. Our study demonstrates the model's remarkable capacity to capture the inherent physical relationships between process parameters and microstructure features. We scrutinize the synthesized images alongside real-world SEM counterparts, undertaking a comprehensive analysis of various morphological properties. Remarkably, the results show the model's performance, with an average error of 6.36% ± 0.42 for measured microstructural properties in seen conditions and an equally impressive 6.67% ± 0.85 for unseen conditions. This study envisions a transformative shift in materials science, as advanced AI predictive models offer new potential to streamline the laborious process of microstructure image generation." @default.
- W4387360324 created "2023-10-06" @default.
- W4387360324 creator A5066155287 @default.
- W4387360324 creator A5074652203 @default.
- W4387360324 creator A5086675520 @default.
- W4387360324 date "2023-12-01" @default.
- W4387360324 modified "2023-10-15" @default.
- W4387360324 title "Predictive Microstructure Image Generation Using Denoising Diffusion Probabilistic Models" @default.
- W4387360324 cites W1518272478 @default.
- W4387360324 cites W2013514532 @default.
- W4387360324 cites W2069849897 @default.
- W4387360324 cites W2105192472 @default.
- W4387360324 cites W2586155783 @default.
- W4387360324 cites W2614949728 @default.
- W4387360324 cites W2620045026 @default.
- W4387360324 cites W2760710953 @default.
- W4387360324 cites W2810016982 @default.
- W4387360324 cites W2810863394 @default.
- W4387360324 cites W2886190064 @default.
- W4387360324 cites W2903802132 @default.
- W4387360324 cites W2914540228 @default.
- W4387360324 cites W2943912048 @default.
- W4387360324 cites W2948295794 @default.
- W4387360324 cites W2984578136 @default.
- W4387360324 cites W3011282394 @default.
- W4387360324 cites W3044319545 @default.
- W4387360324 cites W3047371674 @default.
- W4387360324 cites W3099859964 @default.
- W4387360324 cites W3107714972 @default.
- W4387360324 cites W3127605600 @default.
- W4387360324 cites W3159334989 @default.
- W4387360324 cites W3208886480 @default.
- W4387360324 cites W4220960594 @default.
- W4387360324 cites W4225930748 @default.
- W4387360324 cites W4294170298 @default.
- W4387360324 cites W4320719772 @default.
- W4387360324 cites W4366688184 @default.
- W4387360324 doi "https://doi.org/10.1016/j.actamat.2023.119406" @default.
- W4387360324 hasPublicationYear "2023" @default.
- W4387360324 type Work @default.
- W4387360324 citedByCount "0" @default.
- W4387360324 crossrefType "journal-article" @default.
- W4387360324 hasAuthorship W4387360324A5066155287 @default.
- W4387360324 hasAuthorship W4387360324A5074652203 @default.
- W4387360324 hasAuthorship W4387360324A5086675520 @default.
- W4387360324 hasBestOaLocation W43873603241 @default.
- W4387360324 hasConcept C111919701 @default.
- W4387360324 hasConcept C119857082 @default.
- W4387360324 hasConcept C121332964 @default.
- W4387360324 hasConcept C153180895 @default.
- W4387360324 hasConcept C154945302 @default.
- W4387360324 hasConcept C159985019 @default.
- W4387360324 hasConcept C191897082 @default.
- W4387360324 hasConcept C192562407 @default.
- W4387360324 hasConcept C26771246 @default.
- W4387360324 hasConcept C41008148 @default.
- W4387360324 hasConcept C49937458 @default.
- W4387360324 hasConcept C69357855 @default.
- W4387360324 hasConcept C87976508 @default.
- W4387360324 hasConcept C97355855 @default.
- W4387360324 hasConcept C98045186 @default.
- W4387360324 hasConceptScore W4387360324C111919701 @default.
- W4387360324 hasConceptScore W4387360324C119857082 @default.
- W4387360324 hasConceptScore W4387360324C121332964 @default.
- W4387360324 hasConceptScore W4387360324C153180895 @default.
- W4387360324 hasConceptScore W4387360324C154945302 @default.
- W4387360324 hasConceptScore W4387360324C159985019 @default.
- W4387360324 hasConceptScore W4387360324C191897082 @default.
- W4387360324 hasConceptScore W4387360324C192562407 @default.
- W4387360324 hasConceptScore W4387360324C26771246 @default.
- W4387360324 hasConceptScore W4387360324C41008148 @default.
- W4387360324 hasConceptScore W4387360324C49937458 @default.
- W4387360324 hasConceptScore W4387360324C69357855 @default.
- W4387360324 hasConceptScore W4387360324C87976508 @default.
- W4387360324 hasConceptScore W4387360324C97355855 @default.
- W4387360324 hasConceptScore W4387360324C98045186 @default.
- W4387360324 hasFunder F4320331257 @default.
- W4387360324 hasFunder F4320334593 @default.
- W4387360324 hasLocation W43873603241 @default.
- W4387360324 hasOpenAccess W4387360324 @default.
- W4387360324 hasPrimaryLocation W43873603241 @default.
- W4387360324 hasRelatedWork W2058940780 @default.
- W4387360324 hasRelatedWork W2090404944 @default.
- W4387360324 hasRelatedWork W2327828343 @default.
- W4387360324 hasRelatedWork W2354424856 @default.
- W4387360324 hasRelatedWork W2357211366 @default.
- W4387360324 hasRelatedWork W2375093060 @default.
- W4387360324 hasRelatedWork W2389009860 @default.
- W4387360324 hasRelatedWork W2392473810 @default.
- W4387360324 hasRelatedWork W2605776044 @default.
- W4387360324 hasRelatedWork W2803456621 @default.
- W4387360324 hasVolume "261" @default.
- W4387360324 isParatext "false" @default.
- W4387360324 isRetracted "false" @default.
- W4387360324 workType "article" @default.