Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387362172> ?p ?o ?g. }
- W4387362172 endingPage "e20694" @default.
- W4387362172 startingPage "e20694" @default.
- W4387362172 abstract "The World Health Organization (WHO) identifies road traffic injuries as a global health problem. The Eastern-Mediterranean region is particularly suffering from low traffic safety levels, recording the third highest death per capita ratio in the world. It is critical to evaluate and understand the causes of crashes and their severity levels as a first step to devising policies that aim to reduce these causes. Previous studies examining the frequency or severity of crashes present important limitations that motivate the need for the current work. While these studies have investigated the relation of contributing factors to severity of crashes, not until recently the importance of these factors are bring investigated. Even then, less research have explored various Machine Learning models and none in the middle-eastern region. This is critical because the WHO report concludes that the chances of dying in a traffic crash in this region are second only to Africa per 100000 population. This is a first study analyzing the severity of vehicle-to-vehicle crashes among drivers in the United Arab Emirates. Traffic Crash Data was obtained from the Abu Dhabi Police, which consisted of 11,400 observations during the period 2014-2017. Machine learning algorithms, including gradient boosting (GB), support vector machines (SVM), and random forest (RF), were trained and tested to predict crash severity and extract (using feature analysis) its determinants. The models were evaluated using two performance metrics: prediction accuracy and F1-scores. The RF model outperformed both GB and SVM, with the confusion matrix of RF reporting a better prediction for all four crash severity classes. The feature importance analysis indicates that the age of car, age of the injured, and the age of the initiator have the highest effect on severity, which is an important finding as the listed factors were rarely considered in previous studies. Vehicle and road characteristics such as vehicle class, crash type, and lighting are slightly associated with the severity. Consistent with other studies, gender was the least essential predictor of severity. Recommendations are finally provided to the Abu Dhabi Department of Municipalities and Transport (AD-DMT) authority to guide the development of road safety policies and countermeasures to mitigate the occurrence and severity of crashes." @default.
- W4387362172 created "2023-10-06" @default.
- W4387362172 creator A5013652797 @default.
- W4387362172 creator A5043953368 @default.
- W4387362172 creator A5045109621 @default.
- W4387362172 creator A5071929595 @default.
- W4387362172 creator A5078928090 @default.
- W4387362172 date "2023-10-01" @default.
- W4387362172 modified "2023-10-15" @default.
- W4387362172 title "Severity of vehicle-to-vehicle accidents in the UAE: An exploratory analysis using machine learning algorithms" @default.
- W4387362172 cites W2000513404 @default.
- W4387362172 cites W2012838480 @default.
- W4387362172 cites W2025271516 @default.
- W4387362172 cites W2038590212 @default.
- W4387362172 cites W2061855265 @default.
- W4387362172 cites W2082159218 @default.
- W4387362172 cites W2085433166 @default.
- W4387362172 cites W2090563475 @default.
- W4387362172 cites W2102636708 @default.
- W4387362172 cites W2106100548 @default.
- W4387362172 cites W2132735659 @default.
- W4387362172 cites W2149257935 @default.
- W4387362172 cites W2319445280 @default.
- W4387362172 cites W2342723138 @default.
- W4387362172 cites W2623515310 @default.
- W4387362172 cites W2741099223 @default.
- W4387362172 cites W2760917493 @default.
- W4387362172 cites W2769188397 @default.
- W4387362172 cites W2893661187 @default.
- W4387362172 cites W2899653275 @default.
- W4387362172 cites W2916093346 @default.
- W4387362172 cites W2918087432 @default.
- W4387362172 cites W3017177540 @default.
- W4387362172 cites W3020131735 @default.
- W4387362172 cites W3034831768 @default.
- W4387362172 cites W3084025063 @default.
- W4387362172 cites W3084622292 @default.
- W4387362172 cites W3099802519 @default.
- W4387362172 cites W3111353387 @default.
- W4387362172 cites W3127216508 @default.
- W4387362172 cites W3136866223 @default.
- W4387362172 cites W3137520482 @default.
- W4387362172 cites W3138006982 @default.
- W4387362172 cites W4205889196 @default.
- W4387362172 cites W4225326738 @default.
- W4387362172 cites W4297968156 @default.
- W4387362172 cites W4378212444 @default.
- W4387362172 doi "https://doi.org/10.1016/j.heliyon.2023.e20694" @default.
- W4387362172 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37829796" @default.
- W4387362172 hasPublicationYear "2023" @default.
- W4387362172 type Work @default.
- W4387362172 citedByCount "0" @default.
- W4387362172 crossrefType "journal-article" @default.
- W4387362172 hasAuthorship W4387362172A5013652797 @default.
- W4387362172 hasAuthorship W4387362172A5043953368 @default.
- W4387362172 hasAuthorship W4387362172A5045109621 @default.
- W4387362172 hasAuthorship W4387362172A5071929595 @default.
- W4387362172 hasAuthorship W4387362172A5078928090 @default.
- W4387362172 hasBestOaLocation W43873621721 @default.
- W4387362172 hasConcept C11413529 @default.
- W4387362172 hasConcept C119857082 @default.
- W4387362172 hasConcept C12267149 @default.
- W4387362172 hasConcept C127413603 @default.
- W4387362172 hasConcept C138602881 @default.
- W4387362172 hasConcept C142724271 @default.
- W4387362172 hasConcept C154945302 @default.
- W4387362172 hasConcept C169258074 @default.
- W4387362172 hasConcept C183469790 @default.
- W4387362172 hasConcept C187155963 @default.
- W4387362172 hasConcept C190385971 @default.
- W4387362172 hasConcept C199360897 @default.
- W4387362172 hasConcept C2908647359 @default.
- W4387362172 hasConcept C3017944768 @default.
- W4387362172 hasConcept C41008148 @default.
- W4387362172 hasConcept C71924100 @default.
- W4387362172 hasConcept C99454951 @default.
- W4387362172 hasConceptScore W4387362172C11413529 @default.
- W4387362172 hasConceptScore W4387362172C119857082 @default.
- W4387362172 hasConceptScore W4387362172C12267149 @default.
- W4387362172 hasConceptScore W4387362172C127413603 @default.
- W4387362172 hasConceptScore W4387362172C138602881 @default.
- W4387362172 hasConceptScore W4387362172C142724271 @default.
- W4387362172 hasConceptScore W4387362172C154945302 @default.
- W4387362172 hasConceptScore W4387362172C169258074 @default.
- W4387362172 hasConceptScore W4387362172C183469790 @default.
- W4387362172 hasConceptScore W4387362172C187155963 @default.
- W4387362172 hasConceptScore W4387362172C190385971 @default.
- W4387362172 hasConceptScore W4387362172C199360897 @default.
- W4387362172 hasConceptScore W4387362172C2908647359 @default.
- W4387362172 hasConceptScore W4387362172C3017944768 @default.
- W4387362172 hasConceptScore W4387362172C41008148 @default.
- W4387362172 hasConceptScore W4387362172C71924100 @default.
- W4387362172 hasConceptScore W4387362172C99454951 @default.
- W4387362172 hasIssue "10" @default.
- W4387362172 hasLocation W43873621721 @default.
- W4387362172 hasLocation W43873621722 @default.
- W4387362172 hasOpenAccess W4387362172 @default.
- W4387362172 hasPrimaryLocation W43873621721 @default.