Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387362572> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4387362572 abstract "As we look to the next generation of adaptive optics systems, now is the time to develop and explore the technologies that will allow us to image rocky Earth-like planets; wavefront control algorithms are not only a crucial component of these systems but can benefit our adaptive optics systems without requiring increased detector speed and sensitivity or more effective and efficient deformable mirrors. To date, most observatories run the workhorse of their wavefront control as a classic integral controller, which estimates a correction from wavefront sensor residuals, and attempts to apply that correction as fast as possible in closed-loop. An integrator of this nature fails to address temporal lag errors that evolve over scales faster than the correction time, as well as vibrations or dynamic errors within the system that are not encapsulated in the wavefront sensor residuals; these errors impact high contrast imaging systems with complex coronagraphs. With the rise in popularity of machine learning, many are investigating applying modern machine learning methods to wavefront control. Furthermore, many linear implementations of machine learning methods (under varying aliases) have been in development for wavefront control for the last 30-odd years. With this work we define machine learning in its simplest terms, explore the most common machine learning methods applied in the context of this problem, and present a review of the literature concerning novel machine learning approaches to wavefront control." @default.
- W4387362572 created "2023-10-06" @default.
- W4387362572 creator A5008563317 @default.
- W4387362572 creator A5028394402 @default.
- W4387362572 date "2023-10-05" @default.
- W4387362572 modified "2023-10-06" @default.
- W4387362572 title "Tempestas ex machina: a review of machine learning methods for wavefront control" @default.
- W4387362572 doi "https://doi.org/10.1117/12.2676536" @default.
- W4387362572 hasPublicationYear "2023" @default.
- W4387362572 type Work @default.
- W4387362572 citedByCount "0" @default.
- W4387362572 crossrefType "proceedings-article" @default.
- W4387362572 hasAuthorship W4387362572A5008563317 @default.
- W4387362572 hasAuthorship W4387362572A5028394402 @default.
- W4387362572 hasConcept C107464732 @default.
- W4387362572 hasConcept C120665830 @default.
- W4387362572 hasConcept C121332964 @default.
- W4387362572 hasConcept C127413603 @default.
- W4387362572 hasConcept C132771110 @default.
- W4387362572 hasConcept C133731056 @default.
- W4387362572 hasConcept C136872047 @default.
- W4387362572 hasConcept C151730666 @default.
- W4387362572 hasConcept C154945302 @default.
- W4387362572 hasConcept C165699331 @default.
- W4387362572 hasConcept C172707124 @default.
- W4387362572 hasConcept C203479927 @default.
- W4387362572 hasConcept C2775924081 @default.
- W4387362572 hasConcept C2779343474 @default.
- W4387362572 hasConcept C41008148 @default.
- W4387362572 hasConcept C6557445 @default.
- W4387362572 hasConcept C86803240 @default.
- W4387362572 hasConcept C99407587 @default.
- W4387362572 hasConceptScore W4387362572C107464732 @default.
- W4387362572 hasConceptScore W4387362572C120665830 @default.
- W4387362572 hasConceptScore W4387362572C121332964 @default.
- W4387362572 hasConceptScore W4387362572C127413603 @default.
- W4387362572 hasConceptScore W4387362572C132771110 @default.
- W4387362572 hasConceptScore W4387362572C133731056 @default.
- W4387362572 hasConceptScore W4387362572C136872047 @default.
- W4387362572 hasConceptScore W4387362572C151730666 @default.
- W4387362572 hasConceptScore W4387362572C154945302 @default.
- W4387362572 hasConceptScore W4387362572C165699331 @default.
- W4387362572 hasConceptScore W4387362572C172707124 @default.
- W4387362572 hasConceptScore W4387362572C203479927 @default.
- W4387362572 hasConceptScore W4387362572C2775924081 @default.
- W4387362572 hasConceptScore W4387362572C2779343474 @default.
- W4387362572 hasConceptScore W4387362572C41008148 @default.
- W4387362572 hasConceptScore W4387362572C6557445 @default.
- W4387362572 hasConceptScore W4387362572C86803240 @default.
- W4387362572 hasConceptScore W4387362572C99407587 @default.
- W4387362572 hasLocation W43873625721 @default.
- W4387362572 hasOpenAccess W4387362572 @default.
- W4387362572 hasPrimaryLocation W43873625721 @default.
- W4387362572 hasRelatedWork W1686858693 @default.
- W4387362572 hasRelatedWork W2048446592 @default.
- W4387362572 hasRelatedWork W2049040703 @default.
- W4387362572 hasRelatedWork W2049361750 @default.
- W4387362572 hasRelatedWork W2055108729 @default.
- W4387362572 hasRelatedWork W2145258792 @default.
- W4387362572 hasRelatedWork W2234327108 @default.
- W4387362572 hasRelatedWork W2324100776 @default.
- W4387362572 hasRelatedWork W2470712152 @default.
- W4387362572 hasRelatedWork W3006686693 @default.
- W4387362572 isParatext "false" @default.
- W4387362572 isRetracted "false" @default.
- W4387362572 workType "article" @default.