Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387364306> ?p ?o ?g. }
- W4387364306 endingPage "112536" @default.
- W4387364306 startingPage "112536" @default.
- W4387364306 abstract "Complex nonlinear partial differential equations (PDEs) can be decomposed into subsystems comprising certain linear and nonlinear sub-operators. We usually have fundamental solutions to the linear subsystems and have a good knowledge of their uniqueness and regularity. The nonlinear subsystems have more straightforward formulas than the original complex nonlinear PDEs, even with reduced dimensions. Solutions of the complex nonlinear PDEs based on simpler subsystems are investigated in this study. We derive a proper subsystem decomposition of the nonlinear PDEs into linear and nonlinear subsystems to get unique solutions. We propose the sub-operator learning enhanced neural networks (SONets) based on this proper subsystem decomposition to solve nonlinear PDEs. The solutions of nonlinear subsystems with generated force terms are modeled via operator learning. In contrast, only the cumbersome integration and series parts of fundamental solutions of linear subsystems are modeled. The complex nonlinear PDEs are then solved by finding the force terms to minimize the physics-informed loss functions. It is also convenient to generalize SONets for a new PDE parameter, e.g., the diffusion coefficient. Next, we extend the SONets to a meta version (meta-SONets) for parametric PDEs by transfer learning. In meta-SONets, the initial conditions are explicitly encoded via operator learning neural networks (ENNs) to output force terms, followed by the whole SONets to solve PDEs. In the pre-training stage of meta-SONets, parametric PDEs given randomly generated initial conditions are solved by training ENNs to minimize the physics-informed loss functions. At the fine-tuning stage, the trainable parameters of ENNs are fine-tuned to solve the PDE given a new initial condition. Numerical experiments are conducted to solve the Burgers equation, the nonlinear diffusion-reaction system, and the Allen-Cahn equation. The numerical results indicate that SONets with neural network-parameterized force terms obtain solutions with good accuracy. With transfer learning, the computational cost of meta-SONets for solving the nonlinear PDEs with a new initial condition is dramatically reduced." @default.
- W4387364306 created "2023-10-06" @default.
- W4387364306 creator A5012893490 @default.
- W4387364306 creator A5036026043 @default.
- W4387364306 date "2023-12-01" @default.
- W4387364306 modified "2023-10-15" @default.
- W4387364306 title "SONets: Sub-operator learning enhanced neural networks for solving parametric partial differential equations" @default.
- W4387364306 cites W1057021034 @default.
- W4387364306 cites W1633869374 @default.
- W4387364306 cites W2045384647 @default.
- W4387364306 cites W2103496339 @default.
- W4387364306 cites W2137983211 @default.
- W4387364306 cites W2139923370 @default.
- W4387364306 cites W2795982117 @default.
- W4387364306 cites W2801938748 @default.
- W4387364306 cites W2891039272 @default.
- W4387364306 cites W2899283552 @default.
- W4387364306 cites W2914483840 @default.
- W4387364306 cites W3003922491 @default.
- W4387364306 cites W3010839048 @default.
- W4387364306 cites W3015823212 @default.
- W4387364306 cites W3102140816 @default.
- W4387364306 cites W3104114886 @default.
- W4387364306 cites W3111914315 @default.
- W4387364306 cites W3137240924 @default.
- W4387364306 cites W3137474564 @default.
- W4387364306 cites W3177828909 @default.
- W4387364306 cites W3201666041 @default.
- W4387364306 cites W3203127985 @default.
- W4387364306 cites W4221019179 @default.
- W4387364306 cites W4226530413 @default.
- W4387364306 cites W4245463005 @default.
- W4387364306 cites W4283830170 @default.
- W4387364306 cites W4291115659 @default.
- W4387364306 doi "https://doi.org/10.1016/j.jcp.2023.112536" @default.
- W4387364306 hasPublicationYear "2023" @default.
- W4387364306 type Work @default.
- W4387364306 citedByCount "0" @default.
- W4387364306 crossrefType "journal-article" @default.
- W4387364306 hasAuthorship W4387364306A5012893490 @default.
- W4387364306 hasAuthorship W4387364306A5036026043 @default.
- W4387364306 hasBestOaLocation W43873643061 @default.
- W4387364306 hasConcept C104317684 @default.
- W4387364306 hasConcept C105795698 @default.
- W4387364306 hasConcept C117251300 @default.
- W4387364306 hasConcept C121332964 @default.
- W4387364306 hasConcept C134306372 @default.
- W4387364306 hasConcept C154945302 @default.
- W4387364306 hasConcept C158448853 @default.
- W4387364306 hasConcept C158622935 @default.
- W4387364306 hasConcept C17020691 @default.
- W4387364306 hasConcept C185592680 @default.
- W4387364306 hasConcept C2777021972 @default.
- W4387364306 hasConcept C28826006 @default.
- W4387364306 hasConcept C33923547 @default.
- W4387364306 hasConcept C41008148 @default.
- W4387364306 hasConcept C50644808 @default.
- W4387364306 hasConcept C55493867 @default.
- W4387364306 hasConcept C62520636 @default.
- W4387364306 hasConcept C70915906 @default.
- W4387364306 hasConcept C86339819 @default.
- W4387364306 hasConcept C93779851 @default.
- W4387364306 hasConceptScore W4387364306C104317684 @default.
- W4387364306 hasConceptScore W4387364306C105795698 @default.
- W4387364306 hasConceptScore W4387364306C117251300 @default.
- W4387364306 hasConceptScore W4387364306C121332964 @default.
- W4387364306 hasConceptScore W4387364306C134306372 @default.
- W4387364306 hasConceptScore W4387364306C154945302 @default.
- W4387364306 hasConceptScore W4387364306C158448853 @default.
- W4387364306 hasConceptScore W4387364306C158622935 @default.
- W4387364306 hasConceptScore W4387364306C17020691 @default.
- W4387364306 hasConceptScore W4387364306C185592680 @default.
- W4387364306 hasConceptScore W4387364306C2777021972 @default.
- W4387364306 hasConceptScore W4387364306C28826006 @default.
- W4387364306 hasConceptScore W4387364306C33923547 @default.
- W4387364306 hasConceptScore W4387364306C41008148 @default.
- W4387364306 hasConceptScore W4387364306C50644808 @default.
- W4387364306 hasConceptScore W4387364306C55493867 @default.
- W4387364306 hasConceptScore W4387364306C62520636 @default.
- W4387364306 hasConceptScore W4387364306C70915906 @default.
- W4387364306 hasConceptScore W4387364306C86339819 @default.
- W4387364306 hasConceptScore W4387364306C93779851 @default.
- W4387364306 hasLocation W43873643061 @default.
- W4387364306 hasOpenAccess W4387364306 @default.
- W4387364306 hasPrimaryLocation W43873643061 @default.
- W4387364306 hasRelatedWork W2129818458 @default.
- W4387364306 hasRelatedWork W2611574177 @default.
- W4387364306 hasRelatedWork W2949403936 @default.
- W4387364306 hasRelatedWork W2952139525 @default.
- W4387364306 hasRelatedWork W3023806604 @default.
- W4387364306 hasRelatedWork W4288320590 @default.
- W4387364306 hasRelatedWork W4289551052 @default.
- W4387364306 hasRelatedWork W4298023222 @default.
- W4387364306 hasRelatedWork W4301247218 @default.
- W4387364306 hasRelatedWork W571281153 @default.
- W4387364306 hasVolume "495" @default.
- W4387364306 isParatext "false" @default.
- W4387364306 isRetracted "false" @default.