Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387364954> ?p ?o ?g. }
- W4387364954 abstract "Quantum generative modeling (QGM) relies on preparing quantum states and generating samples from these states as hidden---or known---probability distributions. As distributions from some classes of quantum states (circuits) are inherently hard to sample classically, QGM represents an excellent test bed for quantum supremacy experiments. Furthermore, generative tasks are increasingly relevant for industrial machine learning applications, and thus QGM is a strong candidate for demonstrating a practical quantum advantage. However, this requires that quantum circuits are trained to represent industrially relevant distributions, and the corresponding training stage has an extensive training cost for current quantum hardware in practice. In this work, we propose protocols for classical training of QGMs based on circuits of the specific type that admit an efficient gradient computation, while remaining hard to sample. In particular, we consider instantaneous quantum polynomial (IQP) circuits and their extensions. Showing their classical simulability in terms of the time complexity, sparsity, and anticoncentration properties, we develop a classically tractable way of simulating their output probability distributions, allowing classical training to a target probability distribution. The corresponding quantum sampling from IQPs can be performed efficiently, unlike when using classical sampling. We numerically demonstrate the end-to-end training of IQP circuits using probability distributions for up to 30 qubits on a regular desktop computer. When applied to industrially relevant distributions this combination of classical training with quantum sampling represents an avenue for reaching advantage in the noisy intermediate-scale quantum (NISQ) era." @default.
- W4387364954 created "2023-10-06" @default.
- W4387364954 creator A5011246716 @default.
- W4387364954 creator A5071149447 @default.
- W4387364954 creator A5073625462 @default.
- W4387364954 date "2023-10-05" @default.
- W4387364954 modified "2023-10-06" @default.
- W4387364954 title "Protocols for classically training quantum generative models on probability distributions" @default.
- W4387364954 cites W1498436455 @default.
- W4387364954 cites W1590419653 @default.
- W4387364954 cites W1860626550 @default.
- W4387364954 cites W2041497060 @default.
- W4387364954 cites W2072969317 @default.
- W4387364954 cites W2267486489 @default.
- W4387364954 cites W2394549188 @default.
- W4387364954 cites W2482126025 @default.
- W4387364954 cites W2604388771 @default.
- W4387364954 cites W2749114779 @default.
- W4387364954 cites W2752346050 @default.
- W4387364954 cites W2775608145 @default.
- W4387364954 cites W2784994528 @default.
- W4387364954 cites W2790388700 @default.
- W4387364954 cites W2794444783 @default.
- W4387364954 cites W2797767079 @default.
- W4387364954 cites W2798434869 @default.
- W4387364954 cites W2798945316 @default.
- W4387364954 cites W2798967590 @default.
- W4387364954 cites W2805441291 @default.
- W4387364954 cites W2807516705 @default.
- W4387364954 cites W2889426946 @default.
- W4387364954 cites W2899283552 @default.
- W4387364954 cites W2903221501 @default.
- W4387364954 cites W2926552232 @default.
- W4387364954 cites W2949864545 @default.
- W4387364954 cites W2952897508 @default.
- W4387364954 cites W3015834614 @default.
- W4387364954 cites W3097990818 @default.
- W4387364954 cites W3100408144 @default.
- W4387364954 cites W3100806676 @default.
- W4387364954 cites W3101479050 @default.
- W4387364954 cites W3101548872 @default.
- W4387364954 cites W3102634331 @default.
- W4387364954 cites W3103832819 @default.
- W4387364954 cites W3104334377 @default.
- W4387364954 cites W3104844238 @default.
- W4387364954 cites W3108818881 @default.
- W4387364954 cites W3110594610 @default.
- W4387364954 cites W3111121905 @default.
- W4387364954 cites W3129110052 @default.
- W4387364954 cites W3139424548 @default.
- W4387364954 cites W3163993681 @default.
- W4387364954 cites W3189764233 @default.
- W4387364954 cites W3193365047 @default.
- W4387364954 cites W3196492698 @default.
- W4387364954 cites W3210984111 @default.
- W4387364954 cites W3213910114 @default.
- W4387364954 cites W4224254118 @default.
- W4387364954 cites W4281298092 @default.
- W4387364954 cites W4281891658 @default.
- W4387364954 cites W4292651864 @default.
- W4387364954 cites W4362470806 @default.
- W4387364954 cites W4385633654 @default.
- W4387364954 doi "https://doi.org/10.1103/physreva.108.042406" @default.
- W4387364954 hasPublicationYear "2023" @default.
- W4387364954 type Work @default.
- W4387364954 citedByCount "0" @default.
- W4387364954 crossrefType "journal-article" @default.
- W4387364954 hasAuthorship W4387364954A5011246716 @default.
- W4387364954 hasAuthorship W4387364954A5071149447 @default.
- W4387364954 hasAuthorship W4387364954A5073625462 @default.
- W4387364954 hasConcept C105795698 @default.
- W4387364954 hasConcept C11413529 @default.
- W4387364954 hasConcept C121332964 @default.
- W4387364954 hasConcept C121864883 @default.
- W4387364954 hasConcept C137019171 @default.
- W4387364954 hasConcept C149441793 @default.
- W4387364954 hasConcept C203087015 @default.
- W4387364954 hasConcept C33923547 @default.
- W4387364954 hasConcept C41008148 @default.
- W4387364954 hasConcept C58053490 @default.
- W4387364954 hasConcept C62520636 @default.
- W4387364954 hasConcept C80444323 @default.
- W4387364954 hasConcept C84114770 @default.
- W4387364954 hasConceptScore W4387364954C105795698 @default.
- W4387364954 hasConceptScore W4387364954C11413529 @default.
- W4387364954 hasConceptScore W4387364954C121332964 @default.
- W4387364954 hasConceptScore W4387364954C121864883 @default.
- W4387364954 hasConceptScore W4387364954C137019171 @default.
- W4387364954 hasConceptScore W4387364954C149441793 @default.
- W4387364954 hasConceptScore W4387364954C203087015 @default.
- W4387364954 hasConceptScore W4387364954C33923547 @default.
- W4387364954 hasConceptScore W4387364954C41008148 @default.
- W4387364954 hasConceptScore W4387364954C58053490 @default.
- W4387364954 hasConceptScore W4387364954C62520636 @default.
- W4387364954 hasConceptScore W4387364954C80444323 @default.
- W4387364954 hasConceptScore W4387364954C84114770 @default.
- W4387364954 hasIssue "4" @default.
- W4387364954 hasLocation W43873649541 @default.
- W4387364954 hasOpenAccess W4387364954 @default.
- W4387364954 hasPrimaryLocation W43873649541 @default.