Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387367773> ?p ?o ?g. }
- W4387367773 endingPage "430" @default.
- W4387367773 startingPage "408" @default.
- W4387367773 abstract "The high pace rising global competitions across education sector has forced institutions to enhance aforesaid aspects, which require assessing students or related stakeholders’ perception and opinion towards the learning materials, courses, learning methods or pedagogies, etc. To achieve it, the use of reviews by students can of paramount significance; yet, annotating student’s opinion over huge heterogenous and unstructured data remains a tedious task. Though, the artificial intelligence (AI) and natural language processing (NLP) techniques can play decisive role; yet the conventional unsupervised lexicon, corpus-based solutions, and machine learning and/or deep driven approaches are found limited due to the different issues like class-imbalance, lack of contextual details, lack of long-term dependency, convergence, local minima etc. The aforesaid challenges can be severe over large inputs in Big Data ecosystems. In this reference, this paper proposed an outlier resilient semantic featuring deep driven sentiment analysis model (ORDSAENet) for educational domain sentiment annotations. To address data heterogeneity and unstructured-ness over unpredictable digital media, the ORDSAENet applies varied pre-processing methods including missing value removal, Unicode normalization, Emoji and Website link removal, removal of the words with numeric values, punctuations removal, lower case conversion, stop-word removal, lemmatization, and tokenization. Moreover, it applies a text size-constrained criteria to remove outlier texts from the input and hence improve ROI-specific learning for accurate annotation. The tokenized data was processed for Word2Vec assisted continuous bag-of-words (CBOW) semantic embedding followed by synthetic minority over-sampling with edited nearest neighbor (SMOTE-ENN) resampling. The resampled embedding matrix was then processed for Bi-LSTM feature extraction and learning that retains both local as well as contextual features to achieve efficient learning and classification. Executing ORDSAENet model over educational review dataset encompassing both qualitative reviews as well as quantitative ratings for the online courses, revealed that the proposed approach achieves average sentiment annotation accuracy, precision, recall, and F-Measure of 95.87%, 95.26%, 95.06% and 95.15%, respectively, which is higher than the LSTM driven standalone feature learning solutions and other state-of-arts. The overall simulation results and allied inferences confirm robustness of the ORDSAENet model towards real-time educational sentiment annotation solution." @default.
- W4387367773 created "2023-10-06" @default.
- W4387367773 creator A5007814243 @default.
- W4387367773 creator A5089823016 @default.
- W4387367773 date "2023-10-05" @default.
- W4387367773 modified "2023-10-16" @default.
- W4387367773 title "ORDSAENet: Outlier Resilient Semantic Featured Deep Driven Sentiment Analysis Model for Education Domain" @default.
- W4387367773 cites W1499202053 @default.
- W4387367773 cites W1946413303 @default.
- W4387367773 cites W1990239322 @default.
- W4387367773 cites W2017238344 @default.
- W4387367773 cites W2022204871 @default.
- W4387367773 cites W2024136832 @default.
- W4387367773 cites W2054921494 @default.
- W4387367773 cites W2065692962 @default.
- W4387367773 cites W2099813784 @default.
- W4387367773 cites W2128668540 @default.
- W4387367773 cites W2154444445 @default.
- W4387367773 cites W2154611638 @default.
- W4387367773 cites W2199803028 @default.
- W4387367773 cites W2286968682 @default.
- W4387367773 cites W2306941105 @default.
- W4387367773 cites W2550356265 @default.
- W4387367773 cites W2604668619 @default.
- W4387367773 cites W2778003548 @default.
- W4387367773 cites W2788856212 @default.
- W4387367773 cites W2793070678 @default.
- W4387367773 cites W2805229114 @default.
- W4387367773 cites W2884491530 @default.
- W4387367773 cites W2943233196 @default.
- W4387367773 cites W2946851249 @default.
- W4387367773 cites W2991342122 @default.
- W4387367773 cites W3001455619 @default.
- W4387367773 cites W3004758714 @default.
- W4387367773 cites W3022935508 @default.
- W4387367773 cites W302779521 @default.
- W4387367773 cites W3035269559 @default.
- W4387367773 cites W3047386186 @default.
- W4387367773 cites W3093722805 @default.
- W4387367773 cites W3107931287 @default.
- W4387367773 cites W3124908461 @default.
- W4387367773 cites W3128513378 @default.
- W4387367773 cites W3129108741 @default.
- W4387367773 cites W3133966466 @default.
- W4387367773 cites W3139310403 @default.
- W4387367773 cites W3175234726 @default.
- W4387367773 cites W3180521534 @default.
- W4387367773 cites W3180966651 @default.
- W4387367773 cites W3185791460 @default.
- W4387367773 cites W3187669469 @default.
- W4387367773 cites W3198743574 @default.
- W4387367773 cites W3199263016 @default.
- W4387367773 cites W3216698728 @default.
- W4387367773 cites W4200435508 @default.
- W4387367773 cites W4205863966 @default.
- W4387367773 cites W4210254834 @default.
- W4387367773 cites W4211186029 @default.
- W4387367773 cites W4213338007 @default.
- W4387367773 cites W4214681676 @default.
- W4387367773 cites W4220694803 @default.
- W4387367773 cites W4233906183 @default.
- W4387367773 cites W4283373101 @default.
- W4387367773 cites W4285140393 @default.
- W4387367773 cites W4285811132 @default.
- W4387367773 cites W4286377476 @default.
- W4387367773 cites W4288097494 @default.
- W4387367773 cites W4297087995 @default.
- W4387367773 cites W4300556840 @default.
- W4387367773 cites W4312001989 @default.
- W4387367773 cites W4383264294 @default.
- W4387367773 cites W4383264413 @default.
- W4387367773 cites W4383265267 @default.
- W4387367773 cites W4383342812 @default.
- W4387367773 doi "https://doi.org/10.53759/7669/jmc202303034" @default.
- W4387367773 hasPublicationYear "2023" @default.
- W4387367773 type Work @default.
- W4387367773 citedByCount "0" @default.
- W4387367773 crossrefType "journal-article" @default.
- W4387367773 hasAuthorship W4387367773A5007814243 @default.
- W4387367773 hasAuthorship W4387367773A5089823016 @default.
- W4387367773 hasBestOaLocation W43873677731 @default.
- W4387367773 hasConcept C108583219 @default.
- W4387367773 hasConcept C119857082 @default.
- W4387367773 hasConcept C154945302 @default.
- W4387367773 hasConcept C176982825 @default.
- W4387367773 hasConcept C204321447 @default.
- W4387367773 hasConcept C23123220 @default.
- W4387367773 hasConcept C2776461190 @default.
- W4387367773 hasConcept C2777462759 @default.
- W4387367773 hasConcept C41008148 @default.
- W4387367773 hasConcept C41608201 @default.
- W4387367773 hasConcept C66402592 @default.
- W4387367773 hasConceptScore W4387367773C108583219 @default.
- W4387367773 hasConceptScore W4387367773C119857082 @default.
- W4387367773 hasConceptScore W4387367773C154945302 @default.
- W4387367773 hasConceptScore W4387367773C176982825 @default.
- W4387367773 hasConceptScore W4387367773C204321447 @default.
- W4387367773 hasConceptScore W4387367773C23123220 @default.